4 research outputs found

    Low mannitol concentrations in Arabidopsis thaliana expressing Ectocarpus genes improve salt tolerance

    Get PDF
    Mannitol is abundant in a wide range of organisms, playing important roles in biotic and abiotic stress responses. Nonetheless, mannitol is not produced by a vast majority of plants, including many important crop plants. Mannitol-producing transgenic plants displayed improved tolerance to salt stresses though mannitol production was rather low, in the µM range, compared to mM range found in plants that innately produce mannitol. Little is known about the molecular mechanisms underlying salt tolerance triggered by low concentrations of mannitol. Reported here is the production of mannitol in Arabidopsis thaliana, by expressing two mannitol biosynthesis genes from the brown alga Ectocarpus sp. strain Ec32. To date, no brown algal genes have been successfully expressed in land plants. Expression of mannitol-1-phosphate dehydrogenase and mannitol-1-phosphatase genes was associated with the production of 42.3–52.7 nmol g−1 fresh weight of mannitol, which was sufficient to impart salinity and temperature stress tolerance. Transcriptomics revealed significant differences in the expression of numerous genes, in standard and salinity stress conditions, including genes involved in K+ homeostasis, ROS signaling, plant development, photosynthesis, ABA signaling and secondary metabolism. These results suggest that the improved tolerance to salinity stress observed in transgenic plants producing mannitol in µM range is achieved by the activation of a significant number of genes, many of which are involved in priming and modulating the expression of genes involved in a variety of functions including hormone signaling, osmotic and oxidative stress, and ion homeostasis

    A Novel Protein from Ectocarpus sp. Improves Salinity and High Temperature Stress Tolerance in Arabidopsis thaliana

    No full text
    Brown alga Ectocarpus sp. belongs to Phaeophyceae, a class of macroalgae that evolved complex multicellularity. Ectocarpus sp. is a dominant seaweed in temperate regions, abundant mostly in the intertidal zones, an environment with high levels of abiotic stresses. Previous transcriptomic analysis of Ectocarpus sp. revealed several genes consistently induced by various abiotic stresses; one of these genes is Esi0017_0056, which encodes a protein with unknown function. Bioinformatics analyses indicated that the protein encoded by Esi0017_0056 is soluble and monomeric. The protein was successfully expressed in Escherichia coli,Arabidopsis thaliana and Nicotiana benthamiana. In A. thaliana the gene was expressed under constitutive and stress inducible promoters which led to improved tolerance to high salinity and temperature stresses. The expression of several key abiotic stress-related genes was studied in transgenic and wild type A. thaliana by qPCR. Expression analysis revealed that genes involved in ABA-induced abiotic stress tolerance, K+ homeostasis, and chaperon activities were significantly up-regulated in the transgenic line. This study is the first report in which an unknown function Ectocarpus sp. gene, highly responsive to abiotic stresses, was successfully expressed in A. thaliana, leading to improved tolerance to salt and temperature stress
    corecore