242 research outputs found

    Fisherman’s Problem

    Get PDF

    Depreciation Reserves and Rising Prices

    Get PDF

    Multi-Prover Commitments Against Non-Signaling Attacks

    Get PDF
    We reconsider the concept of multi-prover commitments, as introduced in the late eighties in the seminal work by Ben-Or et al. As was recently shown by Cr\'{e}peau et al., the security of known two-prover commitment schemes not only relies on the explicit assumption that the provers cannot communicate, but also depends on their information processing capabilities. For instance, there exist schemes that are secure against classical provers but insecure if the provers have quantum information processing capabilities, and there are schemes that resist such quantum attacks but become insecure when considering general so-called non-signaling provers, which are restricted solely by the requirement that no communication takes place. This poses the natural question whether there exists a two-prover commitment scheme that is secure under the sole assumption that no communication takes place; no such scheme is known. In this work, we give strong evidence for a negative answer: we show that any single-round two-prover commitment scheme can be broken by a non-signaling attack. Our negative result is as bad as it can get: for any candidate scheme that is (almost) perfectly hiding, there exists a strategy that allows the dishonest provers to open a commitment to an arbitrary bit (almost) as successfully as the honest provers can open an honestly prepared commitment, i.e., with probability (almost) 1 in case of a perfectly sound scheme. In the case of multi-round schemes, our impossibility result is restricted to perfectly hiding schemes. On the positive side, we show that the impossibility result can be circumvented by considering three provers instead: there exists a three-prover commitment scheme that is secure against arbitrary non-signaling attacks

    Breast reconstruction affects coping mechanisms in breast cancer survivors.

    Get PDF
    Coping strategies used by women with breast cancer are vital for adjustment to their disease. Whilst it is clear that factors such as age at diagnosis, social support and ethnicity can influence coping mechanisms, there is currently no information about whether breast reconstruction changes mechanisms of coping for such patients. The aims of this study, therefore, were to determine how women who have had immediate breast reconstruction and mastectomy cope, compared to those who have mastectomy alone, and whether there are differences in coping mechanisms due to breast reconstruction surgery. This was a retrospective cohort study, using a standardised questionnaire called the Brief Cope Scale. Inclusion criteria was the following: all women who had immediate breast reconstruction and mastectomy in Shropshire from 2003 to 2014 for ductal carcinoma in situ or node-negative invasive breast cancer. Each patient was matched for year of diagnosis, adjuvant therapy and age to one woman who had mastectomy alone. Two hundred thirty-four questionnaires were sent with a 58% response rate. Significantly more patients from the reconstruction cohort coped by active coping (T value 1.66, P value 0.04) compared to those in the mastectomy alone cohort. In contrast, significantly more patients in the mastectomy alone cohort coped by active venting compared to the reconstruction cohort (T value 1.71, P value 0.04). This study indicates for the first time that breast reconstruction may alter coping mechanisms in breast cancer survivors. Awareness of these coping mechanisms will enable clinicians to provide appropriate, individualised support

    A note on "symmetric" vielbeins in bimetric, massive, perturbative and non perturbative gravities

    Get PDF
    We consider a manifold endowed with two different vielbeins EAμE^{A}{}_{\mu} and LAμL^{A}{}_{\mu} corresponding to two different metrics gμνg_{\mu\nu} and fμνf_{\mu\nu}. Such a situation arises generically in bimetric or massive gravity (including the recently discussed version of de Rham, Gabadadze and Tolley), as well as in perturbative quantum gravity where one vielbein parametrizes the background space-time and the other the dynamical degrees of freedom. We determine the conditions under which the relation gμνEAμLBν=gμνEBμLAνg^{\mu\nu} E^{A}{}_{\mu} L^{B}{}_{\nu} = g^{\mu\nu} E^{B}{}_{\mu} L^{A}{}_{\nu} can be imposed (or the "Deser-van Nieuwenhuizen" gauge chosen). We clarify and correct various statements which have been made about this issue.Comment: 20 pages. Section 7, prop. 6 and 7. added. Some results made more precis

    Quantum-classical transition in Scale Relativity

    Get PDF
    The theory of scale relativity provides a new insight into the origin of fundamental laws in physics. Its application to microphysics allows us to recover quantum mechanics as mechanics on a non-differentiable (fractal) spacetime. The Schrodinger and Klein-Gordon equations are demonstrated as geodesic equations in this framework. A development of the intrinsic properties of this theory, using the mathematical tool of Hamilton's bi-quaternions, leads us to a derivation of the Dirac equation within the scale-relativity paradigm. The complex form of the wavefunction in the Schrodinger and Klein-Gordon equations follows from the non-differentiability of the geometry, since it involves a breaking of the invariance under the reflection symmetry on the (proper) time differential element (ds - ds). This mechanism is generalized for obtaining the bi-quaternionic nature of the Dirac spinor by adding a further symmetry breaking due to non-differentiability, namely the differential coordinate reflection symmetry (dx^mu - dx^mu) and by requiring invariance under parity and time inversion. The Pauli equation is recovered as a non-relativistic-motion approximation of the Dirac equation.Comment: 28 pages, no figur
    • …
    corecore