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Abstract. We reconsider the concept of two-prover (and more gener-
ally: multi-prover) commitments, as introduced in the late eighties in the
seminal work by Ben-Or et al. As was recently shown by Crépeau et al.,
the security of known two-prover commitment schemes not only relies on
the explicit assumption that the two provers cannot communicate, but
also depends on what their information processing capabilities are. For
instance, there exist schemes that are secure against classical provers but
insecure if the provers have quantum information processing capabilities,
and there are schemes that resist such quantum attacks but become inse-
cure when considering general so-called non-signaling provers, which are
restricted solely by the requirement that no communication takes place.

This poses the natural question whether there exists a two-prover com-
mitment scheme that is secure under the sole assumption that no com-
munication takes place, and that does not rely on any further restriction
of the information processing capabilities of the dishonest provers; no
such scheme is known.

In this work, we give strong evidence for a negative answer: we show
that any single-round two-prover commitment scheme can be broken by
a non-signaling attack. Our negative result is as bad as it can get: for
any candidate scheme that is (almost) perfectly hiding, there exists a
strategy that allows the dishonest provers to open a commitment to an
arbitrary bit (almost) as successfully as the honest provers can open an
honestly prepared commitment, i.e., with probability (almost) 1 in case
of a perfectly sound scheme. In the case of multi-round schemes, our
impossibility result is restricted to perfectly hiding schemes.

On the positive side, we show that the impossibility result can be circum-
vented by considering three provers instead: there exists a three-prover
commitment scheme that is secure against arbitrary non-signaling at-
tacks.
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1 Introduction

Background. A commitment scheme is an important primitive in theoretical
cryptography with various applications, for instance to zero-knowledge proofs
and multiparty computation, which themselves are fundamentally important
concepts in modern cryptography. For a commitment scheme to be secure, it
must be hiding and binding. The former means that after the commit phase,
the committed value is still hidden from the verifier, and the latter means that
the prover (also referred to as committer) can open a commitment only to one
value. Unfortunately, a commitment scheme cannot be unconditionally hiding
and unconditionally binding at the same time. This is easy to see in the classi-
cal setting, and holds as well when using quantum communication [10, 9]. Thus,
we have to put some limitation on the capabilities of the dishonest party. One
common approach is to assume that the dishonest prover (or, alternatively, the
dishonest verifier) has limited computing resources, so that he cannot solve cer-
tain computational problems (like factoring large integers). Another approach
was suggested by Ben-Or, Goldwasser, Kilian and Wigderson in their seminal
paper [2] in the late eighties. They assume that the prover consists of two (or
more) agents that cannot communicate with each other, and they show the ex-
istence of a secure commitment scheme in this two-prover setting. Based on this
two-prover commitment scheme, they then show that every language in NP has
a two-prover perfect zero-knowledge interactive proof system (though there are
some subtle issues in this latter result, as discussed in [15]).

A simple example of a two-prover commitment scheme, due to [4], is the
following. The verifier chooses a uniformly random string a ∈ {0, 1}n and sends
it to the first prover, who sends back x := r ⊕ a · b as the commitment for bit
b ∈ {0, 1}, where r ∈ {0, 1}n is a uniformly random string known (only) to the
two provers, and where “⊕” is bit-wise XOR and “·” scalar multiplication (of
the scalar b with the vector a). In order to open the commitment (to b), the
second prover sends back y := r, and the verifier checks the obvious: whether
y = x⊕a·b. It is clear that this scheme is hiding: x := r⊕a·b is uniformly random
and independent of a no matter what b is, and the intuition behind the binding
property is the following. In order to open the commitment to b = 0, the second
prover needs to announce y = x; in order to open to b = 1, he needs to announce
y = x ⊕ a. Therefore, in order to open to both, he must know x and x ⊕ a,
which means he knows a, but this is a contradiction to the no-communication
assumption, because a was sent only to the first prover.

In [4], Crépeau, Salvail, Simard and Tapp show that, as a matter of fact,
the security of such two-prover commitment schemes not only relies on the ex-
plicit assumption that the two provers cannot communicate, but the security
also crucially depends on the information processing capabilities of the dishon-
est provers. Indeed, they show that a slight variation of the above two-prover
commitment scheme (where some slack is given to the verification y = x⊕ a · b)
is secure against classical provers, but is completely insecure if the provers have
quantum information processing capabilities and can obtain x and y by means of



doing local measurements on an entangled quantum state.1 Furthermore, they
show that the above two-prover commitment scheme remains secure against such
quantum attacks, but becomes insecure against so-called non-signaling provers.
The notion of non-signaling was first introduced by Khalfin and Tsirelson [14]
and by Rastall [12] in the context of Bell-inequalities, and later reintroduced by
Popescu and Rohrlich [11]. Non-signaling provers are restricted solely by the re-
quirement that no communication takes place — no additional restriction limits
their information processing capabilities (not even the laws of quantum mechan-
ics) — and thus considering non-signaling provers is the minimal assumption for
the two-prover setting to make sense.

This gives rise to the following question. Does there exist a two-prover com-
mitment scheme that is secure against arbitrary non-signaling provers? Such a
scheme would truly be based on the sole assumption that the provers cannot
communicate. No such scheme is known. Clearly, from a practical point of view,
asking for such a scheme may be overkill; given our strong believe in quantum
mechanics, relying on a scheme that resists quantum attacks seems to be a safe
bet. But from a theoretical perspective, this question is certainly in line with the
general goal of theoretical cryptography: to find the strongest possible security
based on the weakest possible assumption.

Our Results. In this work, we give strong evidence for a negative answer:
we show that there exists no single-round two-prover commitment scheme that
is secure against general non-signaling attacks. Our impossibility result is as
strong as it can get. We show that for any candidate single-round two-prover
commitment scheme that is (almost) perfectly hiding, the binding property can
be (almost) completely broken: there exists a non-signaling strategy that allows
the dishonest provers to open a commitment to an arbitrary bit (almost) as
successfully as the honest provers can open an honestly prepared commitment,
i.e., with probability (almost) 1 in case of a perfectly sound scheme. Furthermore,
for a restricted but natural class of schemes, namely for schemes that have the
same communication pattern as the above example scheme, our impossibility
result is tight: for every (rational) parameter 0 < ε ≤ 1 there exists a perfectly
sound two-prover commitment scheme that is ε-hiding and as binding as allowed
by our negative result (which is almost not binding if ε is small).

In the case of multi-round schemes, our impossibility result is limited and ap-
plies to perfectly hiding schemes only. Proving the impossibility of non-perfectly-
hiding multi-round schemes remains open.

On the positive side, we show the existence of a secure three-prover commit-
ment scheme against non-signaling attacks. Thus, our impossibility result can
be circumvented by considering three instead of two provers.

Related Work. Two-prover commitments are closely related to relativistic
commitments, as introduced by Kent in [8]. In a nutshell, a relativistic commit-

1 The above intuition for the binding property of the scheme (which also applies to the
variation considered in [4]) fails in the quantum setting where x and y are obtained
by means of destructive measurements.



ment scheme is a two-prover commitment scheme where the no-communication
requirement is enforced by having the actions of the two provers separated by a
space-like interval, i.e., the provers are placed far enough apart, and the scheme
is executed quickly enough, so that no communication can take place by the
laws of special relativity. As such, our impossibility result immediately implies
impossibility of relativistic commitment schemes of the form we consider (e.g.,
we do not consider quantum schemes) against general non-signaling attacks.

Very generally speaking, and somewhat surprisingly, the (in)security of cryp-
tographic primitives against non-signaling attacks may have an impact on more
standard cryptographic settings, as was recently demonstrated by Kalai, Raz
and Rothblum [7], who showed the (computational) security of a delegation
scheme based on the security of an underlying multi-party interactive proof sys-
tem against non-signaling (or statistically-close-to-non-signaling) adversaries.

2 Preliminaries

2.1 (Conditional) Distributions

For the purpose of this work, a (probability) distribution is a function p : X → R,
x 7→ p(x), where X is a finite non-empty set, with the properties that p(x) ≥ 0
for every x ∈ X and

∑
x∈X p(x) = 1. For any subset Λ ⊂ X , p(Λ) is naturally

defined as p(Λ) =
∑
x∈Λ p(x), and it holds that

p(Λ) + p(Γ ) = p(Λ ∪ Γ )− p(Λ ∩ Γ ) ≤ 1 + p(Λ ∩ Γ ) (1)

for all Λ, Γ ⊂ X . A probability distribution is bipartite if it is of the form
p : X ×Y → R. In case of such a bipartite distribution p(x, y), probabilities like
p(x=y), p(x=f(y)), p(x 6=y) etc. are naturally understood as

p(x=y) = p({(x, y) ∈ X × Y |x = y}) =
∑

x∈X ,y∈Y
s.t. x=y

p(x, y)

etc. Also, for a bipartite distribution p : X ×Y → R, the marginals p(x) and p(y)
are given by p(x) =

∑
y p(x, y) and p(y) =

∑
x p(x, y), respectively. We note that

this notation may lead to an ambiguity when writing p(w) for some w ∈ X ∩Y;
we avoid this by writing p(x = w) or p(y = w) instead, which are naturally
understood. The above obviously extends to arbitrary multipartite distributions
p(x, y, z) etc.

A conditional (probability) distribution is a function p : X ×A → R, (x, a) 7→
p(x|a), for finite non-empty sets X and A, such that for every fixed a∗ ∈ A, the
function p(x|a∗) is a probability distribution in the above sense, which we also
write as p(x|a=a∗). As such, the above naturally extends to bi- and multipartite
conditional probability distributions; e.g., if p(x, y|a, b) is a conditional distribu-
tion then p(x|a, b), p(y|a, b), p(x=y|a, b) etc. are all naturally defined. However,
we emphasize that for instance p(x|a) is in general not well defined — unless the
corresponding conditional distribution p(b|a) is given, or unless p(x|a, b) does
not depend on b.



Remark 1. By convention, we write p(x|a, b) = p(x|a) to express that p(x|a, b)
does not depend on b, i.e., that p(x|a, b1) = p(x|a, b2) for all b1 and b2, and as
such p(x|a) is well defined and equals p(x|a, b).

A distribution δ(x) over X is called a Dirac distribution if there exists x∗ ∈ X
so that δ(x= x∗) = 1, and a conditional distribution δ(x|a) over X is called a
conditional Dirac distribution if δ(x|a = a∗) is a Dirac distribution for every
a∗ ∈ A, i.e., for every a∗ ∈ A there exists x∗ ∈ X so that δ(x=x∗|a=a∗) = 1.

Note that we often abuse notation slightly and simply write p(x) instead of
p : X → R, x 7→ p(x); furthermore, we may use p for different distributions
and distinguish between them by using different names for the variable, like
when we consider the two marginals p(x) and p(y) of a bipartite distribution
p(x, y). Finally, given two distributions p(x0) and q(x1) over the same set X (and
similarly if we use the above convention and denote them by p(x0) and p(x1)
instead), we write p(x0) = q(x1) to denote that p(x0 =w) = q(x1 =w) for all
w ∈ X . In a corresponding way, equalities like p(x0, x

′
0, y) = q(x1, x

′
1, y) should

be understood; in situations where we feel it is helpful, we may clarify that “x0
is associated with x1, and x′0 with x′1”; similarly for conditional distributions.

2.2 Gluing Together Distributions

We recall the definition of the statistical distance.

Definition 1. Let p(x0) and p(x1) be two distributions over the same set X .2

Then, their statistical distance is defined as

d
(
p(x0), p(x1)

)
=

1

2
·
∑
x∈X

∣∣p(x0 =x)− p(x1 =x)
∣∣ .

The following property of the statistical distance is well known (see e.g. [13]).

Proposition 1. Let p(x0) and p(x1) be two distributions over the same set X
with d

(
p(x0), p(x1)

)
= ε. Then, there exists a distribution p′(x0, x1) over X ×X

with marginals p′(x0) = p(x0) and p′(x1) = p(x1), and such that p′(x0 6=x1) = ε.

The following is an immediate consequence.

Lemma 1. Let p(x0, y0) and p(x1, y1) be distributions with d
(
p(x0), p(x1)

)
= ε.

Then, there exists a distribution p′(x0, x1, y0, y1) with marginals p′(x0, y0) =
p(x0, y0) and p′(x1, y1) = p(x1, y1), and such that p′(x0 6= x1) = ε and, as a
consequence, d

(
p′(x0, y1), p′(x1, y1)

)
≤ ε.

Proof. We first apply Proposition 1 to p(x0) and p(x1) to obtain p′(x0, x1), and
then we set

p′(x0, x1, y0, y1) = p′(x0, x1) · p(y0|x0) · p(y1|x1) .

2 This is without loss of generality: the domain can always be extended by including
zero-probability elements.



The claims on the marginals and on p′(x0 6=x1) follow immediately, and for the
last claim we note that

p′(x0, y1) = p′(x0 =x1) · p′(x0, y1|x0 =x1) + p′(x0 6=x1) · p′(x0, y1|x0 6=x1)

= p′(x0 =x1) · p′(x1, y1|x0 =x1) + p′(x0 6=x1) · p′(x0, y1|x0 6=x1)

and

p′(x1, y1) = p′(x0 =x1) · p′(x1, y1|x0 =x1) + p′(x1 6=x1) · p′(x1, y1|x0 6=x1)

and the claim follows because p′(x1 6=x1) = ε. ut

Remark 2. Note that due to the consistency of the marginals, it makes sense to
write p(x0, x1, y0, y1) instead of p′(x0, x1, y0, y1). We say that we “glue together”
p(x0, y0) and p(x1, y1) along x0 and x1.

Remark 3. In the special case where p(x0) and p(x1) are identically distributed,
i.e., d

(
p(x0), p(x1)

)
= 0, we obviously have p(x0, y1) = p(x1, y1).

Remark 4. It is easy to see from the proof of Lemma 1 that the following
natural property holds. If p(x0, x1, y0, y1, y

′
0, y
′
1) is obtained by gluing together

p(x0, y0, y
′
0) and p(x1, y1, y

′
1) along x0 and x1, then the marginal p(x0, x1, y0, y1)

coincides with the distribution obtained by gluing together the marginals p(x0, y0)
and p(x1, y1) along x0 and x1.

3 Bipartite Systems and Two-Prover Commitments

3.1 One-Round Bipartite Systems

Informally, a bipartite system consists of two subsystem, which we refer to as the
left and the right subsystem. Upon input a to the left and input a′ to the right
subsystem, the left subsystem outputs x and the right subsystem outputs x′ (see
Figure 1, left). Formally, the behavior of such a system is given by a conditional
distribution q(x, x′|a, a′), with the interpretation that given input (a, a′), the
system outputs a specific pair (x, x′) with probability q(x, x′|a, a′). Note that
we leave the sets A,A′,X and X ′, from which a, a′, x and x′ are respectively
sampled, implicit.

If we do not put any restriction upon the system, then any conditional dis-
tribution q(x, x′|a, a′) is eligible, i.e., describes a bipartite system. However, we
are interested in systems where the two subsystems cannot communicate with
each other. How exactly this requirement restricts q(x, x′|a, a′) depends on the
available “resources”. For instance, if the two subsystems are deterministic, i.e.,
compute x and x′ as deterministic functions of a and a′ respectively, then this
restricts q(x, x′|a, a′) to be of the form q(x, x′|a, a′) = δ(x|a) · δ(x′|a′) for condi-
tional Dirac distributions δ(x|a) and δ(x′|a′). If in addition to allowing them to



compute deterministic functions, we give the two subsystem shared randomness,
then q(x, x′|a, a′) may be of the form

q(x, x′|a, a′) =
∑
r

p(r) · δ(x|a, r) · δ(x′|a′, r)

for a distribution p(r) and conditional Dirac distributions δ(x|a, r) and δ(x′|a′, r).
Such a system is called classical or local. Interestingly, this is not the end of
the story. By the laws of quantum mechanics, if the two subsystems share an
entangled quantum state and obtain x and x′ without communication as the
result of local measurements that may depend on a and a′, respectively, then
this gives rise to conditional distributions q(x, x′|a, a′) of the form

q(x, x′|a, a′) =
〈
ψ
∣∣(Eax ⊗ F a′x′

)∣∣ψ〉 ,
where |ψ〉 is a quantum state and {Eax}x and {F a′x′ }x′ are so-called POVMs.
What this exactly means is not important for us; what is important is that
this leads to a strictly larger class of bipartite systems. This is typically referred
to as a violation of Bell inequalities [1], and is nicely captured by the notion
of nonlocal games. A famous example is the so-called CHSH-game [3], which
is closely connected to the example two-prover commitment scheme from the
introduction, and which shows that the variant considered in [4] is insecure
against quantum attacks.

The largest possible class of bipartite systems that is compatible with the
requirement that the two subsystem do not communicate, but otherwise does
not assume anything on the available resources and/or the underlying physical
theory, are the so-called non-signaling systems, defined as follows.

Definition 2. A conditional distribution q(x, x′|a, a′) is called a non-signaling
(one-round) bipartite system if it satisfies

q(x|a, a′) = q(x|a) (NS)

as well as with the roles of the primed and unprimed variables exchanged, i.e.,

q(x′|a, a′) = q(x′|a′) (NS′)

Recall that, by the convention in Remark 1, the equality (NS) is to be understood
in the sense that q(x|a, a′) does not depend on a′, i.e., that q(x|a, a′1) = q(x|a, a′2)
for all a′1, a

′
2, and correspondingly for (NS′).

We emphasize that this is the minimal necessary condition for the require-
ment that the two subsystems do not communicate. Indeed, if e.g. q(x|a, a′1) 6=
q(x|a, a′2), i.e., if the input-output behavior of the left subsystem depends on
the input to the right subsystem, then the system can be used to communicate
by giving input a′1 or a′2 to the right subsystem, and observing the input-output
behavior of the left subsystem. Thus, in such a system, communication does take
place.



The non-signaling requirement for a bipartite system is — conceptually and
formally — equivalent to requiring that the two subsystems can (in principle) be
queried in any order. Conceptually, it holds because the left subsystem should
be able to deliver its outputs before the right subsystem has received any input
if and only if the output does not depend on the right subsystem’s input (which
means that no information is communicated from right to left), and similarly
the other way round. And, formally, we see that the non-signaling requirement
from Definition 2 is equivalent to asking that q(x, x′|a, a′) can be written as

q(x, x′|a, a′) = q(x|a) · q(x′|x, a, a′) and q(x, x′|a, a′) = q(x′|a′) · q(x|x′, a, a′)

for some respective conditional distributions q(x|a) and q(x′|a′). This charac-
terization is a convenient way to “test” whether a given bipartite system is
non-signaling without doing the maths.

Clearly, all classical systems are non-signaling. Also, any quantum system is
non-signaling.3 But there are non-signaling systems that are not quantum (and
thus in particular not classical). The typical example is the NL-box (non-local
box; also known as PR-box) [11], which, upon input bits a and a′ outputs random
output bits x and x′ subject to

x⊕ x′ = a · a′ .

This system is indeed non-signaling, as it can be queried in any order: submit
a to the left subsystem to obtain a uniformly random x, and then submit a′ to
the right subsystem to obtain x′ := x⊕ a · b, and correspondingly the other way
round.

3.2 Two-Round Systems

We now consider bipartite systems as discussed above, but where one can interact
with the two subsystems multiple times. We restrict to two rounds: after having
input a to the left subsystem and obtained x as output, one can now input b into
the left subsystem and obtain output y, and similarly with the right subsystem
(see Figure 1, right). In such a two-round setting, the non-signaling condition
needs to be paired with causality, which captures that the output of the first
round does not depend on the input that will be given in the second round.

Definition 3. A conditional distribution q(x, x′, y, y′|a, a′, b, b′) is called a non-
signaling two-round bipartite system if it satisfies the following two causality
constraints

q(x, x′|a, a′, b, b′) = q(x, x′|a, a′) (C1)

and q(x′|x, y, a, a′, b, b′) = q(x′|x, y, a, a′, b) (C2)

3 Indeed, the two parts of an entangled quantum state can be measured in any order,
and the outcome of the first measurement does not depend on how the other part is
going to be measured.
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Fig. 1. A one-round (left) and two-round (right) bipartite system.

and the following two non-signaling constraints

q(x, y|a, a′, b, b′) = q(x, y|a, b) (NS1)

and q(y|x, x′, a, a′, b, b′) = q(y|x, x′, a, a′, b) (NS2)

as well as with the roles of the primed and unprimed variables exchanged.

(C1) captures causality of the overall system, i.e., when considering the left and
the right system as one “big” multi-round system. (C2) captures that no matter
what interaction there is with the left system, the right system still satisfies
causality. Similarly, (NS1) captures that the left and the right system are non-
signaling over both rounds, and (NS2) captures that no matter what interaction
there was in the first round, the left and the right system remain non-signaling
in the second round.

It is rather clear that these are necessary conditions; we argue that they are
sufficient to capture a non-signaling two-round system in the full version [6].

3.3 Two-Prover Commitments

We consider two-prover commitments of the following form. To commit to bit
b, the two provers P and Q receive respective “questions” a and a′ from the
verifier V , and they compute, without communicating with each other, respective
replies x and x′ and send them to V . To open the commitment, P and Q send
respectively y and y′. Finally, V performs some check to decide whether to accept
or not.

In case of classical provers P and Q, restricting the opening phase to one
round with one-way communication is without loss of generality: one may always
assume that in the opening phase P and Q simply reveal the shared randomness,
and V checks whether x and x′ had been correctly computed, consistent with
the claimed bit b. Restricting the commit phase to one round is, as far as we can
see, not without loss of generality; we discuss the multi-round case later.

Formally, this can be captured as follows.

Definition 4. A (single-round) two-prover commitment scheme Com consists of
a probability distribution p(a, a′), two conditional distributions p0(x, x′, y, y′|a, a′)



and p1(x, x′, y, y′|a, a′), and an acceptance predicate Acc(x, x′, y, y′|a, a′, b).
We say that Com is classical/quantum/non-signaling if p0(x, x′, y, y′|a, a′) and
p1(x, x′, y, y′|a, a′) are both classical/quantum/non-signaling when parsed as bi-
partite one-round systems pb((x, y), (x′, y′)|a, a′). By default, any two-prover com-
mitment scheme Com is assumed to be non-signaling.

The distribution p(a, a′) captures how V samples the “questions” a and a′,
pb(x, x

′, y, y′|a, a′) describes the choices of x and x′ and of y and y′, given that the
bit to commit to is b, and Acc(x, x′, y, y′|a, a′, b) determines whether V accepts
the opening or not. Whether a scheme is classical, quantum or non-signaling
captures the restrictions of the honest provers.

Given a two-prover commitment scheme Com, we define

Prob[Acc|b] :=
∑

a,a′,x,x′,y,y′

p(a, a′) · pb(x, x′, y, y′|a, a′) · Acc(x, x′, y, y′|a, a′, b) ,

which is the probability that a correctly formed commitment to bit b is success-
fully opened.

Definition 5. A commitment scheme Com is θ-sound if Probp[Acc|b] ≥ θ for
b ∈ {0, 1}. We say that it is perfectly sound if it is 1-sound.

It will be convenient to write p(x0, x
′
0, y0, y

′
0|a, a′) instead of p0(x, x′, y, y′|a, a′)

and p(x1, x
′
1, y1, y

′
1|a, a′) instead of p1(x, x′, y, y′|a, a′). Switching to this nota-

tion, the hiding property is expressed as follows.

Definition 6. Com is called ε-hiding if d
(
p(x0, x

′
0|a, a′), p(x1, x′1|a, a′)

)
≤ ε for

all a, a′. If Com is 0-hiding, we also say it is perfectly hiding.

Capturing the binding property is more subtle. From the classical approach
of defining the binding property for a commitment scheme, one is tempted to
require that once the commit phase is over and a, a′, x and x′ are fixed, ad-
versarial provers P̂ and Q̂ cannot come up with an opening to b = 0 and si-
multaneously with an opening to b = 1, i.e., with y0, y

′
0 and y1, y

′
1 such that

Acc(x, x′, y0, y
′
0|a, a′, b = 0) and Acc(x, x′, y1, y

′
1|a, a′, b = 1) are both satisfied

(except with small probability). However, as pointed out by Dumais, Mayers
and Salvail [5], in the context of a general physical theory where y and y′ may
possibly be obtained as respective outcomes of destructive measurements (as is
the case in quantum mechanics), such a definition is too weak. It does not ex-
clude that P̂ and Q̂ can freely choose to open the commitment to b = 0 or to
b = 1, whatever they want, but they cannot do both simultaneously; once they
have produced one opening, their respective states got disturbed and the other
opening can then not be obtained anymore.

Our definition for the binding property is based on the following game be-
tween the (honest) verifier V and the adversarial provers P̂ , Q̂.

1. The commit phase is executed: V samples a and a′ according to p(a, a′), and
sends a to P̂ and a′ to Q̂, upon which P̂ and Q̂ send x and x′ back to V ,
respectively.



2. V sends a bit b ∈ {0, 1} to P̂ and Q̂.

3. P̂ and Q̂ try to open the commitment to b: they prepare y and y′ and send
them to V .

4. V checks if the verification predicate Acc(x, x′, y, y′|a, a′, b) is satisfied.

We emphasize that even though in the actual binding game above, the same
bit b is given to the two provers, we require that the response of the provers
is well determined by their strategy even in the case that b 6= b′. Of course, if
the provers are allowed to communicate, they are able to detect when b 6= b′

and could reply with, e.g., y = y′ = ⊥ in that case. However, if we restrict
to non-signaling provers, we assume that it is physically impossible for them to
communicate with each other and distinguish the case of b = b′ from b 6= b′.

As such, a non-signaling attack strategy against the binding property of
a two-prover commitment scheme Com is given by a non-signaling two-round
bipartite system q(x, x′, y, y′|a, a′, b, b′), as specified in Definition 3. For any such
bipartite system, representing a strategy for P̂ and Q̂ in the above game, the
probability that P̂ and Q̂ win the game, in that Acc(x, x′, y, y′|a, a′, b) is satisfied
when they have to open to the bit b, is given by

Prob∗q [Acc|b] :=
∑

a,a′,x,x′,y,y′

p(a, a′)·q(x, x′, y, y′|a, a′, b, b)·Acc(x, x′, y, y′|a, a′, b) .

We are now ready to define the binding property.

Definition 7. A two-prover commitment scheme Com is δ-binding (against
non-signaling attacks) if it holds for any non-signaling two-round bipartite sys-
tem q(x, x′, y, y′|a, a′, b, b′) that

Prob∗q [Acc|0] + Prob∗q [Acc|1] ≤ 1 + δ .

In other words, a scheme is δ-binding if in the above game the dishonest provers
win with probability at most (1 + δ)/2 when b ∈ {0, 1} is chosen uniformly
at random. If a commitment scheme is binding (for a small δ) in the sense of
Definition 7, then for any strategy q for P̂ and Q̂, they can just as well honestly
commit to a bit b̂, where b̂ is set to 0 with probability p0 = Prob∗q [Acc|0] and to
1 with probability p1 = 1− p0 ≈ Prob∗q [Acc|1], and they will have essentially the
same respective success probabilities in opening the commitment to b = 0 and
to b = 1.

4 Impossibility of Two-Prover Commitments

In this section, we show impossibility of secure single-round two-prover com-
mitments against arbitrary non-signaling attacks. We start with the analysis of
a restricted class of schemes which are easier to understand and for which we
obtained stronger results.



4.1 Simple Schemes

We first consider a special, yet natural, class of schemes. We call a two-prover
commitment scheme Com simple if it has the same communication pattern as the
scheme described in the introduction. More formally, it is called simple if a′, x′

and y are “empty” (or fixed), i.e., if Com is given by p(a), p0(x, y′|a), p1(x, y′|a)
and Acc(x, y′|a, b); to simplify notation, we then write y instead of y′. In other
words, P is only involved in the commit phase, where, in order to commit to
bit b, he outputs x upon input a, and Q is only involved in the opening phase,
where he outputs y. The non-signaling requirement for Com then simplifies to
pb(y|a) = pb(y). Recall that by our convention, we may write p(x0, y0|a) instead
of p0(x, y|a) and p(x1, y1|a) instead of p1(x, y|a).

In case of such a simple two-prover commitment scheme Com, a non-signaling
two-prover strategy reduces to a non-signaling one-round bipartite system as
specified in Definition 2 (see Figure 2).

a

x

b

y

Fig. 2. The adversaries’ strategy q(x, y|a, b) in case of a simple commitment scheme.

As a warm-up exercise, we first consider a simple two-prover commitment
scheme that is perfectly hiding and perfectly sound. Recall that formally, a simple
scheme is given by p(a), p0(x, y|b), p1(x, y|a) and Acc(x, y|a, b), and the perfect
hiding property means that p0(x|a) = p1(x|a) for any a. To show that such a
scheme cannot be binding, we have to show that there exists a non-signaling
one-round bipartite system q(x, y|a, b) such that Prob∗q [Acc|0] + Prob∗q [Acc|1]
is significantly larger than 1. But this is actually trivial: we can simply set
q(x, y|a, b) := pb(x, y|a). It then holds trivially that

Prob∗q [Acc|b] =
∑
a,x,y

p(a) q(x, y|a, b)Acc(x, y|a, b)

=
∑
a,x,y

p(a) pb(x, y|a)Acc(x, y|a, b)

= Probp[Acc|b]

and thus that the dishonest provers are as successful in opening the commitment
as are the honest provers in opening an honestly prepared commitment. Thus,
the binding property is broken as badly as it can get. The only thing that needs



to be verified is that q(x, y|a, b) is non-signaling, i.e., that q(x|a, b) = q(x|a) and
q(y|a, b) = q(y|b). To see that the latter holds, note that q(y|a, b) = pb(y|a), and
because Com is non-signaling we have that pb(y|a) = pb(y), i.e., does not depend
on a. Thus, the same holds for q(y|a, b) and we have q(y|a, b) = q(y|b). The
former condition follows from the (perfect) hiding property: q(x|a, b) = pb(x|a) =
pb′(x|a) = q(x|a, b′) for arbitrary b, b′ ∈ {0, 1}, and thus q(x|a, b) = q(x|a).

Below, we show how to extend this result to non-perfectly-binding simple
schemes. In this case, we cannot simply set q(x, y|a, b) := pb(x, y|a), because
such a q would not be non-signaling anymore — it would merely be “almost
non-signaling”. Instead, we have to find a strategy q(x, y|a, b) that is (perfectly)
non-signaling and close to pb(x, y|a); we will find such a strategy with the help
of Lemma 1. In Section 4.2, we will then consider general schemes where both
provers interact with the verifier in both phases. In this general case, further
complications arise.

Theorem 1. Consider a simple two-prover commitment scheme Com that is
ε-hiding. Then, there exists a non-signaling strategy q(x, y|a, b) such that

Prob∗q [Acc|0] = Probp[Acc|0] and Prob∗q [Acc|1] ≥ Probp[Acc|1]− ε .

If Com is perfectly sound, it follows that

Prob∗q [Acc|0] + Prob∗q [Acc|1] ≥ 1 + (1− ε)

and thus it cannot be δ-binding for δ < 1− ε.

Proof. Recall that Com is given by p(a), pb(x, y|a) and Acc(x, y|a, b), and we
write p(xb, yb|a) instead of pb(x, y|a). Because Com is ε-hiding, it holds that
d
(
p(x0|a), p(x1|a)

)
≤ ε for any fixed a. Thus, using Lemma 1 for every a,

we can glue together p(x0, y0|a) and p(x1, y1|a) along x0 and x1 to obtain a
distribution p(x0, x1, y0, y1|a) such that p(x0 6= x1|a) ≤ ε, and in particular
d
(
p(x0, y1|a), p(x1, y1|a)

)
≤ ε.

We define a strategy q for the dishonest provers by setting q(x, y|a, b) :=
p(x0, yb|a) (see Figure 3). First, we show that q is non-signaling. Indeed, we
have q(x|a, b) = p(x0|a) for any b, so q(x|a, b) = q(x|a), and we have q(y|a, b) =
p(yb|a) = p(yb) for any a, and thus q(y|a, b) = q(y|b).

As for the acceptance probability, for b = 0 we have q(x, y|a, 0) = p(x0, y0|a)
and as such Prob∗q [Acc|0] equals Probp[Acc|0]. For b = 1, we have

d
(
q(x, y|a, 1), p(x1, y1|a)

)
= d
(
p(x0, y1|a), p(x1, y1|a)

)
≤ ε

and since the statistical distance does not increase under data processing, it
follows that Probp[Acc|1] and Prob∗q [Acc|1] are ε-close; this proves the claim. ut

The bound on the binding property in Theorem 1 is tight, as the following
theorem shows. The proof is given in the full version [6].

Theorem 2. For all ε ∈ Q such that 0 < ε ≤ 1 there exists a classical simple
two-prover commitment scheme that is perfectly sound, ε-hiding and (1 − ε)-
binding against non-signaling adversaries.
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Fig. 3. Defining the strategy q by gluing together p(x0, y0|a) and p(x1, y1|a).

4.2 Arbitrary Schemes

We now remove the restriction on the scheme to be simple. As before, we first
consider the case of a perfectly hiding scheme.

Theorem 3. Let Com be a single-round two-prover commitment scheme. If
Com is perfectly hiding, then there exists a non-signaling two-prover strategy
q(x, x′, y, y′|a, a′, b, b′) such that

Prob∗q [Acc|b] = Probp[Acc|b]

for b ∈ {0, 1}.

Proof. Com being perfectly hiding means that d(p(x0, x
′
0|a, a′), p(x1, x′1|a, a′)) =

0 for all a and a′. Gluing together the distributions p(x0, x
′
0, y0, y

′
0|a, a′) and

p(x1, x
′
1, y1, y

′
1|a, a′) along (x0, x

′
0) and (x1, x

′
1) for every (a, a′), we obtain a

distribution p(x0, x
′
0, x1, x

′
1, y0, y

′
0, y1, y

′
1|a, a′) with the correct marginals and

p((x0, x
′
0) 6= (x1, x

′
1)|a, a′) = 0. That is, we have x0 = x1 and x′0 = x′1 with

certainty. We now define a strategy for dishonest provers as (Figure 4)

q(x, x′, y, y′|a, a′, b, b′) := p(x0, x
′
0, yb, y

′
b′ |a, a′) .

Since p(x0, x
′
0, yb, y

′
b|a, a′) = p(xb, x

′
b, yb, y

′
b|a, a′), it holds that Prob∗q [Acc|b] =

Probp[Acc|b]. It remains to show that this distribution satisfies the non-signaling
and causality constraints (C1) up to (NS2) of Definition 3. This is done below.

– For (C1), note that summing up over y and y′ yields q(x, x′|a, a′, b, b′) =
p(x0, x

′
0|a, a′), which indeed does not depend on b and b′.

– For (NS1), note that q(x, y|a, a′, b, b′) = p(x0, yb|a, a′) = p(xb, yb|a, a′) =
p(xb, yb|a), where the last equality holds by the non-signaling property of
p(xb, yb|a, a′).

– For (C2), first note that

q(x, x′, y|a, a′, b, b′) = p(x0, x
′
0, yb|a, a′) (2)

which does not depend on b′. We then see that (C2) holds by dividing by
q(x, y|a, a′, b, b′) = p(x0, yb|a, a′).

– For (NS2), divide Equation (2) by q(x, x′|a, a′, b, b′) = p(x0, x
′
0|a, a′)
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Fig. 4. Defining q from p(x0, x
′
0, y0, y

′
0|a, a′) and p(x1, x

′
1, y1, y

′
1|a, a′) glued together.

The properties (C1) to (NS2) with the roles of the primed and unprimed variables
exchanged follows from symmetry. This concludes the proof. ut

The case of non-perfectly hiding schemes is more involved. At first glance, one
might expect that by proceeding analogously to the proof of Theorem 3 — i.e.,
gluing together p(x0, x

′
0, y0, y

′
0|a, a′) and p(x1, x

′
1, y1, y

′
1|a, a′) along (x0, x

′
0) and

(x1, x
′
1) and defining q the same way — one can obtain a strategy q that succeeds

with probability 1−ε if the scheme is ε-hiding. Unfortunately, this approach fails
because in order to show (NS1) we use that p(x0, y1|a, a′) = p(x1, y1|a, a′) which
in general does not hold for commitment schemes that are not perfectly hiding.
As a consequence, our proof is more involved, and we have a constant-factor loss
in the parameter.

Theorem 4. Let Com be a single-round two-prover commitment scheme and
suppose that it is ε-hiding. Then there exists a non-signaling two-prover strategy
q(x, x′, y, y′|a, a′, b, b′) such that

Prob∗q [Acc|0] = Probp[Acc|0] and Prob∗q [Acc|1] ≥ Probp[Acc|1]− 5ε .

Thus, if Com is perfectly sound, it is at best (1− 5ε)-binding.

To prove this result, we use two lemmas. In the first one, we add the additional
assumptions that p(x0|a, a′) = p(x1|a, a′) and p(x′0|a, a′) = p(x′1|a, a′). The sec-
ond one shows that we can tweak an arbitrary scheme in such a way that these
additional conditions hold. The proofs are given in the full version [6].

Lemma 2. Let Com be a ε-hiding two-prover commitment scheme with the ad-
ditional property that p(x0|a, a′) = p(x1|a, a′) and p(x′0|a, a′) = p(x′1|a, a′). Then,
there exists a non-signaling p′(x1, x

′
1, y1, y

′
1|a, a′) such that

d
(
p′(x1, x

′
1, y1, y

′
1|a, a′), p(x1, x′1, y1, y′1|a, a′)

)
≤ ε

and p′(x1, x
′
1|a, a′) = p(x0, x

′
0|a, a′).

As usual, the non-signaling requirement on p′(x1, x
′
1, y1, y

′
1|a, a′) is to be under-

stood as p′(x1, y1|a, a′) = p′(x1, y1|a) and p′(x′1, y
′
1|a, a′) = p′(x′1, y

′
1|a′).



Lemma 3. Let Com be a ε-hiding two-prover commitment scheme. Then, there
exists a non-signaling p̃(x1, x

′
1, y1, y

′
1|a, a′) such that

d
(
p̃(x1, x

′
1, y1, y

′
1|a, a′), p(x1, x′1, y1, y′1|a, a′)

)
≤ 2ε

which has the property that p̃(x1|a, a′) = p(x0|a, a′) and p̃(x′1|a, a′) = p(x′0|a, a′).

With these two lemmas, Theorem 4 is easy to prove.

Proof (Theorem 4). We start with a ε-hiding non-signaling bit-commitment
scheme Com. We apply Lemma 3 and obtain p̃(x1, x

′
1, y1, y

′
1|a, a′) that is 2ε-close

to p(x1, x
′
1, y1, y

′
1|a, a′) and satisfies p̃(x1|a, a′) = p(x0|a, a′) and p̃(x′1|a, a′) =

p(x′0|a, a′). Furthermore, by triangle inequality

d
(
p̃(x1, x

′
1|a, a′), p(x0, x′0|a, a′)

)
≤ 3ε .

Thus, replacing p(x1, x
′
1, y1, y1|a, a′) by p̃(x1, x

′
1, y1, y

′
1|a, a′) gives us a 3ε-hiding

two-prover commitment scheme that satisfies the extra assumption in Lemma 2.
As a result, we obtain a distribution p′(x1, x

′
1, y1, y

′
1|a, a′) that is 3ε-close to

p̃(x1, x
′
1, y1, y

′
1|a, a′), and thus 5ε-close to p(x1, x

′
1, y1, y

′
1|a, a′), with the property

that p′(x1, x
′
1|a, a′) = p(x0, x

′
0|a, a′). Therefore, replacing p̃(x1, x

′
1, y1, y

′
1|a, a′) by

p′(x1, x
′
1, y1, y

′
1|a, a′) gives us a perfectly-hiding two-prover commitment scheme,

to which we can apply Theorem 3. As a consequence, there exists a non-signaling
strategy q(x, x′, y, y′|a, a′) with Prob∗q [Acc|0] = Probp[Acc|0] and Prob∗q [Acc|1] ≥
Probp[Acc|1]− 5ε, as claimed.

Remark 5. If Com already satisfies p(x0|a, a′) = p(x1|a, a′) and p(x′0|a, a′) =
p(x′1|a, a′), we can apply Lemma 2 right away and thus get a strategy q with
Prob∗q [Acc|0] = Probp[Acc|0] and Prob∗q [Acc|1] ≥ Probp[Acc|1] − ε. Thus, with
this additional condition, we still obtain a tight bound as in Theorem 1.

4.3 Multi-Round Schemes

We briefly discuss a limited extension of our impossibility results for single-round
schemes to schemes where during the commit phase, there is multi-round inter-
action between the verifier V and the two provers P and Q. We still assume the
opening phase to be one-round; this is without loss of generality in case of clas-
sical two-prover commitment schemes (where the honest provers are restricted
to be classical). In this setting, we have the following impossibility result, which
is restricted to perfectly-hiding schemes.

Theorem 5. Let Com be a multi-round two-prover commitment scheme. If Com
is perfectly hiding, then there exists a non-signaling two-prover strategy that com-
pletely breaks the binding property, in the sense of Theorem 3.

A formal proof of this statement requires a definition of n-round non-signaling
bipartite systems for arbitrary n. Such a definition can be based on the intuition
that it must be possible to query the left and right subsystem in any order. With



this definition, the proof is a straightforward extension of the proof of Theorem 3:
the non-signaling strategy is obtained by gluing together p(x0,x

′
0|a,a′) and

p(x1,x
′
1|a,a′) along (x0,x

′
0) and (x1,x

′
1), and setting q(x,x′, y, y′|a,a′, b, b′) :=

p(x0,x
′
0, yb, y

′
b′ |a,a′), where we use bold-face notation for the vectors that col-

lect the messages sent during the multi-round commit phase: a collects all the
messages sent by the verifier to the prover P , etc.

As far as we see, the proof of the non-perfect case, i.e. Theorem 4, does not
generalize immediately to the multi-round case. As such, proving the impossibil-
ity of non-perfectly-hiding multi-round two-prover commitment schemes remains
an open problem.

5 Possibility of Three-Prover Commitments

It turns out that we can overcome the impossibility results by adding a third
prover. We will describe a scheme that is perfectly sound, perfectly hiding and
2−n-binding with communication complexity O(n). We now define what it means
for three provers to be non-signaling; since our scheme is similar to a simple
scheme, we can simplify this somewhat. We consider distributions q(x, y, z|a, b, c)
where a and x are input and output of the first prover P , b and y are input and
output of the second prover Q and c and z are input and output of the third
prover R.

Definition 8. A conditional distribution q(x, y, z|a, b, c) is called a non-signaling
(one-round) tripartite system if it satisfies

q(x|a, b, c) = q(x|a) , q(y|a, b, c) = q(y|b) , q(z|a, b, c) = q(z|c) ,

and

q(x, y|a, b, c) = q(x, y|a, b), q(x, z|a, b, c) = q(x, z|a, c), q(y, z|a, b, c) = q(y, z|b, c).

In other words, for any way of viewing q as a bipartite system by dividing in- and
outputs consistently into two groups, we get a non-signaling bipartite system.

We restrict to simple schemes, where during the commit phase, only P is
active, sending x upon receiving a from the verifier, and during the opening
phase, only Q and R are active, sending y and z to the verifier, respectively.

Definition 9. A simple three-prover commitment scheme Com consists of a
probability distribution p(a), two distributions p0(x, y, z|a) and p1(x, y, z|a), and
an acceptance predicate Acc(x, y, z|a, b).
It is called classical/quantum/non-signaling if pb(x, y, z|a) is, when understood
as a tripartite system pb(x, y, z|a, ∅, ∅) with two “empty” inputs.

Soundness and the hiding-property are defined in the obvious way. As for the
binding property, for a simple three-prover commitment scheme Com and a non-
signaling strategy q(x, y, z|a, b, c), let

Prob∗q [Acc|b] =
∑
a,x,y,z

p(a) · q(x, y, z|a, b, b) · Acc(x, y, z|a, b) .



We say that Com is δ-binding if

Prob∗q [Acc|0] + Prob∗q [Acc|1] ≤ 1 + δ.

Theorem 6. For every positive integer n, there exists a classical simple three-
prover commitment scheme that is perfectly sound, perfectly hiding and 2−n-
binding. The verifier communicates n bits to the first prover and receives n bits
from each prover.

The scheme that achieves this is essentially the same as the example two-prover
scheme described in the introduction, except that we add a third prover that
imitates the actions of the second. To be more precise: the provers P , Q and
R have as shared randomness a uniformly random r ∈ {0, 1}n. The verifier V
chooses a uniformly random a ∈ {0, 1}n and sends it to P . As commitment, P
returns x := r ⊕ a · b. To open the commitment to b, Q and R send y := r and
z := r to V who accepts if and only if y = z and x = y ⊕ a · b.

Before beginning with the formal proof that this scheme has the properties
stated in our theorem, we give some intuition. Let a and x be the input and
output of the dishonest first prover, P . To succeed, the second prover Q has
to produce output x ⊕ a · b where b is the second prover’s input and the third
prover R has to produce x⊕a ·c where c is the third prover’s input. Our theorem
implies that a strategy which always produces these outputs must be signaling.
Why is that the case?

In the game that defines the binding-property, we always have b = c, but the
dishonest provers must obey the non-signaling constraint even in the “impossi-
ble” case that b 6= c. Let us consider the XOR of Q’s output and R’s output in
the case that b 6= c: we get (x ⊕ a · b) ⊕ (x ⊕ a · c) = a · b ⊕ a · c = a. But in
the non-signaling setting, the joint distribution of Q’s and R’s output may not
depend on a. Thus, the strategy we suggested does not satisfy the non-signaling
constraint. Let us now prove the theorem.

Proof (Theorem 6). It is easy to see that the scheme is sound. Furthermore, for
every fixed a and b, pb(x|a) is uniform, so the scheme is perfectly hiding. Now
consider a non-signaling strategy q for dishonest provers. The provers succeed if
and only if y = z = x⊕ a · b. Define q(a, x, y, z|b, c) = p(a) · q(x, y, z|a, b, c). The
non-signaling property implies that

q(y = x⊕ a · b|a, b, c = 0) = q(y = x⊕ a · b|a, b, c = 1) and (3)

q(z = x⊕ a · c|a, b = 0, c) = q(z = x⊕ a · c|a, b = 1, c) . (4)

It follows that

Prob∗q [Acc|0] + Prob∗q [Acc|1]

= q(y = x⊕ a · b, z = x⊕ a · c|b = 0, c = 0)

+ q(y = x⊕ a · b, z = x⊕ a · c|b = 1, c = 1)

≤ q(y = x⊕ a · b|b = 0, c = 0) + q(z = x⊕ a · c|b = 1, c = 1)



= q(y = x⊕ a · b|b = 0, c = 1) + q(z = x⊕ a · c|b = 0, c = 1)

by Equations (3) and (4)

≤ 1 + q(y = x⊕ a · b, z = x⊕ a · c|b = 0, c = 1) by Equation (1)

It now remains to upper-bound q(y = x⊕ a · b, z = x⊕ a · c|b = 0, c = 1). Since
p(a) is uniform and q(y, z|a, b, c) is independent of a, we have

q(y = x⊕ a · b, z = x⊕ a · c|b = 0, c = 1) ≤ q(y ⊕ z = a|b = 0, c = 1) =
1

2n

and thus our scheme is 2−n-binding. ut

Remark 6. The three-prover scheme above has the drawback that two provers
are involved in the opening phase; as such, there needs to be agreement on
whether to open the commitment or not; if there is disagreement then this may
be problematic in certain applications. However, P and Q are not allowed to
communicate. One possible solution is to have V forward an authenticated “open”
or “not open” message from P to Q and R. This allows for some communication
from P to Q and R, but if the size of the authentication tag is small enough
compared to the security parameter of the scheme, i.e., n, then security is still
ensured.
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