

Pectic oligosaccharide structure-function relationships: prebiotics, inhibitors of Escherichia coli O157:H7 adhesion and reduction of Shiga toxin cytotoxicity in HT29 cells

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Di, R., Vakkalanka, M. S., Onumpai, C., Chau, H. K., White, A., Rastall, R. A., Yam, K. and Hotchkiss, A. T. (2017) Pectic oligosaccharide structure-function relationships: prebiotics, inhibitors of Escherichia coli O157:H7 adhesion and reduction of Shiga toxin cytotoxicity in HT29 cells. Food Chemistry, 227. pp. 245-254. ISSN 0308-8146 doi:

https://doi.org/10.1016/j.foodchem.2017.01.100 Available at http://centaur.reading.ac.uk/69158/

It is advisable to refer to the publisher's version if you intend to cite from the work.

Published version at: http://dx.doi.org/10.1016/j.foodchem.2017.01.100

To link to this article DOI: http://dx.doi.org/10.1016/j.foodchem.2017.01.100

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law,

including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Accepted Manuscript

Pectic oligosaccharide structure-function relationships: prebiotics, inhibitors of *Escherichia coli* O157:H7 adhesion and reduction of Shiga toxin cytotoxicity in HT29 cells

Rong Di, Malathi S. Vakkalanka, Chatchaya Onumpai, Hoa K. Chau, Andre White, Robert A. Rastall, Kit Yam, Arland T. Hotchkiss Jr.

PII: S0308-8146(17)30111-5

DOI: http://dx.doi.org/10.1016/j.foodchem.2017.01.100

Reference: FOCH 20492

To appear in: Food Chemistry

Received Date: 5 September 2016 Revised Date: 14 December 2016 Accepted Date: 18 January 2017

Please cite this article as: Di, R., Vakkalanka, M.S., Onumpai, C., Chau, H.K., White, A., Rastall, R.A., Yam, K., Hotchkiss, A.T. Jr., Pectic oligosaccharide structure-function relationships: prebiotics, inhibitors of *Escherichia coli* O157:H7 adhesion and reduction of Shiga toxin cytotoxicity in HT29 cells, *Food Chemistry* (2017), doi: http://dx.doi.org/10.1016/j.foodchem.2017.01.100

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Pectic oligosaccharide structure-function relationships: prebiotics, inhibitors of
2	Escherichia coli O157:H7 adhesion and reduction of Shiga toxin cytotoxicity in
3	HT29 cells
4	
5	Rong Di, ^{a,*} Malathi S. Vakkalanka ^b , Chatchaya Onumpai ^c , Hoa K. Chau ^d , Andre White ^d ,
6	Robert A. Rastall ^c , Kit Yam ^b , and Arland T. Hotchkiss, Jr. ^d
7	
8	^a Department of Plant Biology and Pathology, Rutgers, the State University of New
9	Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, USA
10	^b Department of Food Science, Rutgers, the State University of New Jersey, 60 Dudley
11	Road, New Brunswick, New Jersey 08901, USA
12	^c Department of Food and Nutritional Sciences, The University of Reading, PO Box 226,
13	Whiteknights, Reading RG6 6AP, UK
14	^d Eastern Regional Research Center, U.S. Department of Agriculture, 600 East Mermaid
15	Lane, Wyndmoor, Pennsylvania 19038, USA
16	
17	* Corresponding author
18	Phone: (848)-932-6350. Fax: (732)-932-9377. E-mail: di@aesop.rutgers.edu
19	
20	Abbreviated running title:
21	
22	Prebiotic and anti-adhesive pectic oligosaccharides
23	

24	ABSTRACT
25	
26	Shiga toxin (Stx)-producing, food-contaminating Escherichia coli (STEC) is a major
27	health concern. Plant-derived pectin and pectic-oligosaccharides (POS) have been
28	considered as prebiotics and for the protection of humans from Stx. Of five structurally
29	different citrus pectic samples, POS1, POS2 and modified citrus pectin 1 (MCP1) were
30	bifidogenic with similar fermentabilities in human faecal cultures and arabinose-rich
31	POS2 had the greatest prebiotic potential. Pectic oligosaccharides also enhanced
32	lactobacilli growth during mixed batch faecal fermentation. We demonstrated that all
33	pectic substrates were anti-adhesive for E. coli O157:H7 binding to human HT29 cells
34	Lower molecular weight and deesterification enhanced the anti-adhesive activity. We
35	showed that all pectic samples reduced Stx2 cytotoxicity in HT29 cells, as measured by
36	the reduction of human rRNA depurination detected by our novel TaqMan-based RT-
37	qPCR assay, with POS1 performing the best. POS1 competes with Stx2 binding to the
38	Gb3 receptor based on ELISA results, underlining the POS anti-STEC properties.
39	
40	
41	
42	Keywords:
43	STEC; orange pectic oligosaccharides; anti-adhesion; Shiga toxin 2; TaqMan RT-qPCR
44	rRNA depurination; HT29 cells

1. Introduction

Shiga toxin (Stx)-producing Escherichia coli (STEC) is a major health concern
due to the debilitating hemolytic uremic syndrome which can occur when STEC-
contaminated food is ingested. The Stx holotoxin consists of A and B subunits (Di, Kyu,
Shete, Saidasan, Kahn, & Tumer, 2011). The doughnut-like structure formed by five of
the Stx 7.7 kDa B-subunits binds to the neutral glycolipid globotriaosylceramide (Gb3)
receptor terminated by α -Gal-(1-4)- β -Gal on the human intestinal epithelial cell surface
(Jacewicz, Clausen, Nudelman, Donohue-Rolfe, & Keusch, 1986). The interaction
between Stx B pentamer and Gb3 results in the internalization of the Stx holotoxin by
clathrin-mediated endocytosis (Sandvig, Grimmer, Lauvrak, Torgersen, Skretting, van
Deurs, et al., 2002). The Stx A subunit is a glycosidase belonging to the ribosome-
inactivating protein family that is capable of removing a specific adenine (depurination)
in the conserved sarcin ricin loop (SRL) of the large 28S rRNA of mammalian cells,
resulting in translation inhibition and cell death (Di, Kyu, Shete, Saidasan, Kahn, &
Tumer, 2011). It is estimated by the Center for Disease Control that STEC O157:H7
causes more than 96,000 cases of diarrheal illness and 3,200 hospitalizations annually in
the United States (Scallan, Hoekstra, ANgulo, Tauxe, Widdowson, Roy, et al., 2011).
Presently there is no effective treatment for STEC-related food poisoning. There is
considerable interest in developing dietary approaches to control food-contaminating
pathogens.
Pectic oligosaccharides (POS) have potential as food ingredients that can control
STEC pathogens. Plant-derived pectin and POS have attracted particular attention as
they are abundant in biomass. Pectin consists of a galacturonic acid-rich backbone,

69	known as homogalacturonan, that is partially methyl-esterified. Rhamnose residues
70	interrupt the homogalacturonan to form rhamnogalacturonan I (RG I) and are the branch
71	points for arabino-, galacto- and arabinogalacto-oligosaccharides. POS is obtained from
72	pectin by enzymatic treatment and acid hydrolysis. POS from high methoxylated citrus
73	pectin and from low methoxylated apple pectin protected human colonic HT29 cells from
74	the toxic effects of E. coli O157:H7 Stx1 and Stx2 at 10 mg/ml (Olano-Martin, Williams,
75	Gibson, & Rastall, 2003). However, the protective mechanism was not elucidated.
76	Later, Rhoades, Manderson, Wells, Hotchkiss, Gibson, Formentin, et al. (2008)
77	enumerated viable, attached STEC on HT29 cells and showed that POS provided 70%
78	protection by inhibiting the adhesion of STEC at 2.5 mg/ml compared to non-POS-
79	treated cells. These authors also found that the POS could reduce the cytotoxicity of Stx1
80	and Stx2 at concentrations of 0.01 to 1 μ g/ml, respectively. However, the mechanism of
81	activity was unclear since the POS did not contain α -Gal-(1-4)- β -Gal.
82	POS are known for their prebiotic potential in vitro. The same POS that protected
83	human colonic HT29 cells from the toxic effects of E. coli O157:H7 Stx1 and Stx2 was
84	also bifidogenic (Olano-Martin, Gibson, & Rastell, 2002). POS from a variety of sources
85	was bifidogenic if it contained arabino- and/or galacto-oligosaccharide side chains
86	(Manderson, Pinart, Tuohy, Grace, Hotchkiss, Widmer, et al., 2005; Onumpai, Kolida,
87	Bonnin, & Rastall, 2011). While Guggenbichler, De Bettignies-Dutz, Meissner,
88	Schellmoser, & Jurenitsch (1997) originally reported that galacturonic acid disaccharides
89	and trisaccharides had E. coli anti-adhesive activity, it remains unclear which pectic
90	oligosaccharide structures are responsible, due to the diversity of pectic fractions reported
91	to have this activity.

In previous studies, the cytotoxicity of Stx was measured as a function of neutral
red uptake by the viable cells in the treated samples compared to the non-treated control
sample. Molecular methods have been used to accurately measure the degree of rRNA
damage from Stx depurination. The first such method is called dual primer extension,
using two radioactively labelled oligo DNA primers to measure the levels of the broken
rRNA and the total rRNA, respectively, in a single reverse transcription reaction (Di,
Kyu, Shete, Saidasan, Kahn, & Tumer, 2011). Recently, a real-time RT-qPCR (reverse
transcription-quantitative polymerase chain reaction) method with SYBR Green mix was
developed to quantify the depurinated rRNA level in total RNA, based on the fact that
reverse transcriptase usually incorporates an adenosine opposite to the abasic site on the
template strand (Melchior & Tolleson, 2010). Thus, a T \rightarrow A transversion is created
when cDNA is synthesized by reverse transcriptase, using depurinated rRNA as the
template. For this RT-qPCR depurination assay, two sets of primers are designed: one set
close to the depurination site to measure total 28S rRNA and the other set to detect the
altered sequence at the depurination site. Use of RT-qPCR to measure the level of
depurinated rRNA among total RNA has greatly improved the accuracy of quantification.
It has also saved time and obviated the use of radioactive materials. The RT-qPCR with
SYBR Green method has been used to measure rRNA depurination caused by ricin and
Stx (Melchior & Tolleson, 2010; Pierce, Kahn, Chiou, & Tumer, 2011).
In this study, we analyzed the carbohydrate structures of five different POSs from

In this study, we analyzed the carbohydrate structures of five different POSs from orange peel, compared their bifidogenic potentials and investigated their inhibitory effects on the adhesion of *E. coli* O157:H7 (ATCC43895) bacteria to HT29 cells. In addition, to study the inhibitory effect of POS on Stx cytotoxicity, we developed a novel

RT-qPCR method, using TaqMan probes to quantify the level of depurinated rRNA
versus total rRNA as a measurement of Stx2 cytotoxicity in HT29 cells. TaqMan-based
qPCR is practised for its higher specificity and sensitivity than SYBR Green-based
qPCR. The TaqMan qPCR genotyping approach has been used to detect single
nucleotide polymorphism (SNP) (Kamau, Alemayehu, Feghali, Tolbert, Ogutu, &
Ockenhouse, 2012). As a T \rightarrow A transversion is created when cDNA is synthesized
using the depurinated RNA as a template, the cDNA population containing the T $ ightarrow$ A
mutation can be considered as a cDNA with a single SNP. Our results show that the
rRNA depurination resulting from Stx2 cytotoxicity can be sensitively measured by our
TaqMan RT-qPCR method. We demonstrate the POS structures that are optimal for
bifidogenic properties, inhibition of the adhesion of ATCC43895 to HT29 cells and
reduction of the cytotoxicity of Stx2 in HT29 cells.

2. Materials and methods

2.1. POS

Orange peel POS (OpPOS) was prepared by pilot plant-scale acid hydrolysis of orange peel, according to Manderson, et al. (2005). The pectin was precipitated from the hydrolysate with isopropyl alcohol and removed by filtration. The filtrate containing OpPOS was desalted by 1,000 molecular weight cutoff nano-filtration. The OpPOS used here was a different batch produced at the same time as the material used by Manderson, et al. (2005). The differences in monosaccharide composition between the OpPOS

138	batches were minor other than $8 \times$ less glucose and $2 \times$ more galacturonic acid in the
139	OpPOS used here (Table 1) compared to that used previously (Manderson, et al., 2005)
140	Pectic Oligosaccharide I (POS1), Pectic Oligosaccharide II (POS2), Modified Citrus
141	Pectin I (MCP1) and Modified Citrus Pectin II (MCP2) were obtained from
142	EcoNugenics, Inc. (Santa Rosa, CA, USA). The POS and MCP samples were produced
143	by enzymatic treatment of citrus peel or commercial pectin.

144

145

2.2. Carbohydrate analysis

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

The POS and MCP monosaccharide composition was analyzed, following 2005), by methanolysis (Manderson, et al., high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), using a DX-500 (Dionex, Sunnyvale, CA, USA) system and a CarboPac PA-20 column operated at 0.5 ml/min, as described previously (Hotchkiss, Nunez, Strahan, Chau, White, Marais, et al., 2015). The HPAEC-PAD mobile phase consisted of 14 mM NaOH for 13 min, followed by a 0-120 mM CH3COONa gradient in 100 mM NaOH for 17 min and it was returned to 14 mM NaOH for 40 min prior to the next injection. Molecular weight (MW) was determined by high pressure size exclusion chromatography (HPSEC), with three TSKgel GMPWXL (Tosoh Bioscience, Tokyo, Japan) columns and four detectors (HELEOS II multi-angle laser light scattering, refractive index, 255-V2 differential pressure viscometer; Wyatt Technology, Santa Barbara, CA, USA) and a UV-1260 Infinity spectrophotometer (Agilient Technologies, Santa Clara, CA, USA), as reported previously (Qi, Chau, Fishman, Wickham, & Hotchkiss, 2014). MW values reported are

weight average molar mass values. The	degree of methyl	esterification	was	determined
as described previously (Fishman, Chau,	Cooke, & Hotchki	ss, 2008).		

163

161

162

2.3. In vitro batch fermentation

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

164

Basal medium ingredients (per litre) were: 2.0 g peptone water, 2.0 g yeast extract, 0.1 g NaCl, 0.04 g K₂HPO₄, 0.04 g KH₂PO₄, 0.01 g MgSO₄.7H₂O, 0.01 g CaCl₂.6H₂O, 2.0 g NaHCO₃, 2 ml Tween 80, 0.05 g haemin, 10 µl vitamin K1, 0.5 g Lcysteine HCl, 0.5 g bile salts and 4 ml resazurin (0.05 g/l). Medium was sterilized at 120 °C for 20 min before aseptically dispensing into the sterile fermenters. Substrates were used at 1% (w/v) as the sole carbon source. Inulin ST (Beneo-Orafti, Tienen, Belgium) was used as a positive control. Faecal samples from five healthy adults (3 male, 2 female, mean age of 30.0±7.2 years old) who had not consumed prebiotic or probiotic products, nor had received antibiotic treatment within 3 months before study were obtained in situ in the Department of Food and Nutritional Sciences, The University of Reading. Samples were kept in an anaerobic cabinet and processed within 10 min. Faecal slurries (10% w/w) in 0.17 M phosphate-buffered saline (PBS), pH 7.3 (Oxoid, Basingstoke, UK) were prepared and were homogenized in a stomacher (Stomacher 400, Seward, UK) at normal speed for 2 min. The inoculum size was 10% v/v. pH was regulated at 6.80±0.10 with a pH controller (Fermac 260, Electrolab, Tewkesbury, UK). Fermentation samples were taken at 0, 10, 24, 36 and 48 h. Samples were analyzed for bacterial populations and concentration of short chain fatty acids (SCFA). All

183	experiments were performed in compliance with the laws and guidelines at the University
184	of Reading, UK.
185	
186	2.4. SCFA analysis by HPLC
187	
188	The samples from batch cultures were centrifuged at 13,000 g for 10 min to
189	obtain the supernatant. The clear solution was kept at -20 $^{\circ}\text{C}$ prior to further analysis.
190	Before analysis by HPLC, the samples were centrifuged at $13,000 g$ for $10 min$. The
191	supernatant was filtered through $0.2\ \mu m$ pore size syringe filters (Millipore, UK). The
192	column was an ion-exclusion REZEX-ROA organic acid column (300 \times 7.80 mm;
193	Phenomenex, Cheshire, UK) maintained at 84 °C. The eluent was 0.0025 mM H ₂ SO ₄ ,
194	flow rate of 0.6 ml/min. Concentrations of the separated organic acids were calculated
195	from calibration curves of acetic, propionic, butyric, formic and lactic acids at
196	concentrations of 6.25 to 120 mM, and results were expressed in mmol/ml.
197	
198	2.5. Bacterial enumeration by fluorescence in situ hybridization (FISH)
199	
200	Enumeration of the target faecal bacteria groups was achieved by FISH with
201	fluorescently labelled 16S rRNA probes according to the method described by Vulevic,
202	Drakoularakou, Yaqoob, Tzortzis, & Gibson (2008). The 16S rRNA-targetted
203	oligonucleotide probes used were Lab158 (Harmsen, Elfferich, & Schut, 1999), Bif164
204	(Langendijk, Schut, Jansen, Raangs, Kamphuis, Wilkinson, et al., 1995), Bac303 (Manz,
205	Amann, Ludwig, Vancanneyt, & Schleifer, 1996), Erec482 (Franks, Harmsen, Raangs,

206	Jansen, Schut, & Welling, 1998), Chis150 (Franks, Harmsen, Raangs, Jansen, Schut, &
207	Welling, 1998) and Ato291 (Harmsen, Wildeboer-Veloo, Grijpstra, Knol, Degener, &
208	Welling, 2000) for the group of Lactobacillus/Enterococcus, Bifidobacterium,
209	Bacteroides/Prevotella, Clostridium coccoides–Eubacterium rectale, Clostridium
210	histolyticum and Atopobium cluster, respectively. The probe-hybridized bacterial cells
211	were counted at 565 nm, using fluorescence microscopy. A total bacterial count was
212	obtained by staining with 4'6-diamidino-2-phenylindole (DAPI). Bacterial cells were
213	counted at 461 nm, using UV light for excitation. A minimum of 15 fields of view were
214	counted for each sample. The number of cells obtained is expressed as log10 cells/ml.
215	Statistical analysis was performed using SPSS for Windows, version 17.0. One-
216	way analysis of variance (ANOVA) and Tukey's posthoc test were used to determine
217	significant differences among the bacterial group populations and SCFA concentrations
218	among the different substrates. A paired independent t-test was also used to determine
219	significant changes for each bacterial group concentration at inoculation and subsequent
220	sampling point. Differences were considered to be significant when p<0.05.

2.6. Microbiological media and chemicals

Pre-formulated, dehydrated tryptic soy agar medium and the following chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA) and prepared according to the manufacturer's instructions: PBS tablets (pH ± 0.2, 0.1 mol/l), non-essential amino acid solution, trypsin-EDTA solution and Dulbecco's modified Eagle medium with GlutaMAX-1 (DMEM). PBS was prepared according to the manufacturer's instructions

229	and filter-sterilized with a 0.2 µm syringe filter. Faetal bovine serum (FBS) was obtained
230	from American Type Culture Collection (ATCC, Manassas, VA, USA).
231	
232	2.7. Bacterial cultures
233	
234	Working cultures of E. coli O157:H7 strain ATCC43895 (ATCC, Manassas, VA,
235	USA) were prepared by inoculating the bacteria on a count agar plate and incubating the
236	plate for 18-24 h at 37 °C. E. coli broth cultures for adhesion assays were grown in
237	DMEM supplemented with 5% (v/v) FBS and 1% (v/v) nonessential amino acid solution
238	(SDMEM) and incubated at 37 °C for 18-24 h. The overnight culture was then inoculated
239	1% (v/v) into fresh SDMEM and incubated for a further 18-24 h under the same
240	conditions. On the day of the assay, a 10% (v/v) inoculum was again inoculated into pre-
241	warmed SDMEM and incubated for 4 h at 37 °C.
242	
243	2.8. Cell cultures
244	
245	HT29 human colon adenocarcinoma epithelial cells were obtained from ATCC
246	(Manassas, VA, USA) and cultured in DMEM supplemented with 5% FBS and 1%
247	SDMEM, plus 20 units/ml of penicillin, and 20 μ g/ml of streptomycin at 37 $^{\circ}$ C with 5%
248	CO ₂ . Cells were grown in 25-cm ² tissue culture flasks until reaching confluence, split
249	according to the European Collection of Cell Cultures-recommended method and stored
250	in aliquots in liquid nitrogen. These aliquots were used to seed 25 cm ² flasks which, after

growth,	were split into	12-well tissu	ue culture plates	Cells were	grown to	confluence
before b	eing used for the	ne adhesion as	says.			

2.9. Bacterial adhesion assay

Adhesion assays with the *E. coli* strains were carried out as follows: a culture of the test strain was prepared as described above, and then diluted 1:500 in PBS. The viable count of the diluted suspension was determined by spread-plating onto plate count agar, with decimal dilution being carried out in PBS buffer as appropriate. POSs were dissolved in PBS (5 mg/ml) and sterilized by passing through a 0.2 µm syringe filter. The carbohydrate solutions were further diluted in sterile PBS as required. The SDMEM was aspirated into a 12-well tissue culture plate with near confluent monolayers of HT29 cells, prepared as described above. The monolayers were washed by pipetting in 1 ml of sterile PBS per well, swirling by hand, and then aspirating. A 0.5 ml aliquot of POS solution was added to the well, followed by 0.5 ml of bacterial suspension in PBS. Unsupplemented PBS was substituted for POS solution in the control well. All assays were performed in triplicates. The plates were swirled by hand to mix and incubated at 37 °C for 2 h.

After incubation, the bacterial suspension was aspirated from the wells. A 1 ml aliquot of PBS was added to each well, the plate was swirled briefly by hand, and the PBS was removed. The washing step was repeated two more times. A 70 µl aliquot of trypsin-EDTA solution was added to each well, the plate was rocked to ensure even coverage, and then it was incubated at 37 °C for 5 min. A 1 ml aliquot of PBS was then

pipetted into each well and pipette-mixed until the monolayer was completely dislodged
and clumps dissolved, as determined visually. Bacteria in cell suspension were then
enumerated by plate-counting on count agar plates with decimal dilutions performed in
PBS as required. All plates were incubated at 37 °C for 18-24 h before colonies were
enumerated. Viable counts were calculated for all wells and are expressed as CFU
(colony forming unit)/ml. The anti-adhesion activity of POS was assessed as the
percentage of viable counts in the POS-treated samples compared to the untreated
samples. For each test, the mean and the standard error of the triplicate wells were
calculated. Statistical significances were determined by one-way analysis of variance,
using ANOVA software.
2.10. Cytotoxicity of Stx2 in HT29 cells

Stx2 holotoxin was acquired from BEI Resources (Manassas, VA). HT29 cells grown to 90% confluence were treated with 5 ng of Stx2 in 100 µl SDMEM per well (final Stx2 concentration was 50 ng/ml) in the 96-well plate for 24 h (Pang, Park, Wang, Vummenthala, Mishra, McLaughlin, et al., 2011). To isolate total RNA from treated and untreated HT29 cells, the RLT lysis buffer from the RNeasy Mini Kit (Qiagen, Valencia, CA, USA) was added directly to each well after the medium was aspirated. Total cell RNA was extracted following the manufacturer's protocol and quantitated by a NanoDrop spectrophotometer (Thermo Fisher, Waltham, MA, USA).

296	2.11. Dual primer extension assay to measure rRNA depurination due to Stx2 cytotoxicity
297	in HT29 cells
298	
299	The dual primer extension method has been used extensively to determine the
300	levels of rRNA depurination caused by Stx (Di, Kyu, Shete, Saidasan, Kahn, & Tumer,
301	2011) and ricin from Ricinus communis (castor bean) (Li, Baricevic, Saidasan, & Tumer,
302	2007). In brief, a primer (P1, 28S) was designed to anneal to the 5' end of human 28S
303	rRNA (GenBank accession # NR_003287) and would produce a 99-base single-stranded
304	(ss) cDNA in a RT (reverse transcription) reaction. Another primer (P2, Dep) was
305	designed to anneal just upstream of the depurination site in the sarcin ricin loop (SRL) of
306	28S rRNA, resulting in a 72-base ss cDNA RT product if 28S rRNA was depurinated
307	(Fig. 1). Both the 28S and Dep primers were end-labelled with ³² P-ATP by T4 kinase
308	and used together in an RT reaction by Superscript II (Life Technologies/Thermo Fisher,
309	Waltham, MA, USA), using total RNA as the template. The RT products were separated
310	on a 7M urea-containing 5% polyacrylamide gel by electrophoresis. The autoradiogram
311	was scanned and recorded by a phosphoimager (GE Healthcare, Little Chalfont,
312	Buckinghamshire, UK).
313	
314	2.12. Development of the TaqMan RT-qPCR method to measure rRNA depurination as a
315	result of Stx2 cytotoxicity in HT29 cells
316	
317	Based on the nucleotide sequence of human 28S rRNA (accession # NR_003287),
318	and using the PrimerExpress software of Applied Biosystems (Life Technologies/Thermo

319	Fisher, Waltnam, MA, USA), one set of primers (HSRL F and HSRL R) was designed to
320	amplify the 71-bp spanning the depurination site at the 3' end. Two TaqMan probes
321	(HSRL and HSRLm) were designed at the adenine depurination site to quantitate the
322	non-depurinated and depurinated 28S rRNA levels in HT29 cells, taking advantage of the
323	T to A transversion (mutation). Another set of primers and a TaqMan probe (H28S) were
324	designed to amplify the 62-bp at the 5' end of the 28S rRNA to measure the total 28S
325	rRNA levels. The oligonucleotide primers were synthesized by Sigma Aldrich (St.
326	Louis, MO, USA). The TaqMan probes were synthesized by Applied Biosystems (Life
327	Technologies/Thermo Fisher, Waltham, MA, USA). The positions of these primers and
328	TaqMan probes are illustrated in Fig. 1 and the sequences are shown in Supplement 2.
329	Reverse transcription reaction was carried out with 10 ng of total RNA, using the
330	High Capacity cDNA Kit (Life Technologies/Thermo Fisher, Waltham, MA, USA) and
331	random primers. The qPCR analysis was performed with the 2× TaqMan Master Mix
332	(Life Technologies/Thermo Fisher, Waltham, MA, USA) and the designed primer and
333	TaqMan probe sets with final concentrations of 900 nM for each primer and 250 nM for
334	each probe in, totally, 10 µl. The reaction cycles were as follows: 95 °C, 20 min, 1 cycle;
335	95 °C, 1 min, 60 °C, 2 min, 40 cycles.
336	
337	2.13. Treatment of HT29 cells with Stx2 and POS
338	
339	HT29 cells were seeded into a 24-well plate (Thermo Fisher, Waltham, MA,
340	USA) and grown to 90% confluence. Before treatment with POS and Stx2, cells were
341	washed once with PBS buffer after aspirating the culturing medium. POS with different

concentrations was incubated with 5 ng of Stx2 in 100 µl volume of DMEM for 1 h at
room temperature. These "pre-culture (PC)" POS and Stx2 mixtures were added to HT29
cells which were then incubated at 37 °C with 5% CO ₂ for 24 h. Alternatively, POS at
different concentrations was mixed with 5 ng of Stx2 in 100 μ l volume of DMEM and
added directly to HT29 cells without pre-incubation, designated as "co-culture (CC)"
samples. Total RNA was isolated from treated HT29 cells using the RNeasy Mini Prep
Kit (Qiagen, Hilden, Germany) and quantitated by a Nanodrop Spectrophotometer
(Thermo Fisher, Waltham, MA, USA).

2.14. Competition ELISA

To understand the protective mechanism of POS on HT29 cells against Stx2, competition ELISA (enzyme-linked immunosorbent assay) was conducted to evaluate if POS1 could compete with Stx2 to bind to the Gb3 (globotriaosylceramide) receptor on the cells. Gb3 was purchased from Matreya LLC. (State College, PA, USA), diluted in 100% methanol, and added to each well of the 96-well plate (50 ng/well). The plate was incubated at room temperature for 2 h until the methanol was evaporated. The wells were blocked with 300 μl of 5% dry milk prepared in PBS and incubated at 37 °C for 1 h. For pre-treatment of Stx2, POS1 at 0.02, 0.2 and 1 mg/ml was mixed with 5 ng of Stx2 and incubated at 37 °C for 1 h. Otherwise, POS1 at these concentrations was mixed with 5 ng of Stx2 and added directly to each well in 100 μl of PBS, followed by incubation at 37 °C for 1 h. Polyclonal antibody, specific to the Stx B-subunit, was obtained from BEI Resource, diluted to 1.3 μg/ml with 5% dry milk in PBS, and added to the wells (80

$\mu l/well),$ followed by incubation at 37 ^{o}C for 1 h. Mouse monoclonal antibody against
rabbit IgG, coupled with alkaline phosphatase (Sigma Aldrich, St. Louis, MO, USA), was
diluted by 1:1000 in 5% dry milk/PBS and added to the wells (50 μ l/well). The plate was
incubated at 37 °C for 1 h. Lastly, the SIGMAFAST p-nitrophenyl phosphate tablet
(Sigma Aldrich, St. Louis, MO, USA) was dissolved in SIGMAFAST Tris Buffer (Sigma
Aldrich, St. Louis, MO, USA) and added to the wells (50 μ l/well). The plate was
incubated at room temperature until the yellow colour became apparent and read at 405
nm with the Synergy 4 plate reader (BioTek, Winooski, VT, USA).
3. Results and discussion
3.1. POSs

3. Results and discussion

3.1. *POSs*

Galacturonic acid was the major saccharide residue in four of the pectic fractions (POS1, POS2, MCP1 and MCP2), ranging from 49.2% (w/w) to 79.0% (Table 1). The galacturonic acid content of OpPOS was 22.8%, which meant it was enriched in RG I compared to the other pectic fractions that had 2-3.5× more homogalacturonan, based on galacturonic acid:rhamnose ratios (Table 1). Significant arabino-oligosaccharide branches were present in the OpPOS and POS2 RG I while the galacto-oligosaccharide branches were similar for all samples, based on monosaccharide ratios (Table 1). POS2 reproduced the OpPOS fraction structure published previously (Manderson, et al., 2005) in which the rhamnogalacturonan is heavily substituted with arabinan and arabinogalactan. Arabino- and galacto-oligosaccharide structures are important for the

prebiotic properties of POS (Onumpai, Kolida, Bonnin, & Rastall, 2011). MCP contains
unsaturated oligogalacturonic acids as well as rhamnogalacturonan II produced by
enzymatic hydrolysis of commercial pectin to provide anti-cancer, immuno-stimulatory
and heavy metal-binding properties (Eliaz, Hotchkiss, Fishman, & Rode, 2006; Maxwell,
Colquhoun, Chau, Hotchkiss, Waldron, Morris, et al., 2015; Ramachandran, Wilk,
Hotchkiss, Chau, Eliaz, & Melnick, 2011). Unsaturated oligogalacturonic acids with a
DP of 2-7 were the intermediate degradation products of citrus pectin during human
faecal bacterial fermentation (Dongowski & Lorenz, 1998). The degree of methyl
esterification was low in MCP1 and MCP2 (5.3% and 3.3%), intermediate in POS1 and
POS2 (40.1% and 42%), and high in OpPOS (66.3%) (Table 1). MCP1 had the lowest
MW (9.2 \times 10 ³) and MCP2 had the second lowest MW (17.1 \times 10 ³), followed by POS1,
OpPOS and POS2 (811 x 10 ³) (Table 1). However, the OpPOS and POS2 weight average
molar masses were likely higher than their molecular weights reported in Table 1, due to
a high light-scattering signal that eluted earlier than the refractive index signal in the
HPSEC chromatograms (data not shown). This typically indicates aggregation of smaller
pectic components that may not be covalently linked together as has been reported
previously for pectin (Fishman, Chau, Cooke, & Hotchkiss, 2008).

3.2. SCFA production

The average SCFA produced from mixed batch fermentation, using faeces from five donors, is shown in Table 2. Total organic acids increased sharply by 10 h, reaching a maximum after 36-48 h for POS1, POS2, MCP1 and inulin. Acetate, propionate and

butyrate concentrations increased with fermentation time until 48 h. Lactate and formate
are fermentation intermediates and they completely disappeared after 24 h. Acetate was
previously reported as the main SCFA from pectin oligosaccharide fermentation,
followed by propionate and butyrate (Dongowski & Lorenz, 1998; Titgemeyer, Bourquin,
Fahey, & Garleb, 1991). Butyrate levels were significantly higher with inulin compared
to the other substrates at 24 h, and inulin produced more butyrate than POS1 and MCP1
at 36 h. High standard deviation values made it impossible to distinguish between
butyrate levels produced by all substrates at 48 h and other times during fermentation.
Butyrate is considered to be important for colonic health and function (Hamer, Jonkers,
Venema, Vanhoutvin, Troost, & Brummer, 2008). All pectic substrates evaluated
consistently produced butyrate and it is anticipated that they would promote colonic
health. Overall, POS1, POS 2 and MCP1 showed similar fermentabilities to inulin, based
on the average total organic acids, acetate, propionate, lactate and formate concentrations.
OpPOS had a fermentability similar to fructo-oligosaccharides, producing acetate,
butyrate, lactate and propionate in that concentration order for 24 h of human faecal
fermentation (Manderson, et al., 2005). The degree of methyl esterification, sugar
composition and molecular weight did not influence the POS or MCP fermentability, as
reflected by the similar SCFA yield and profile.

430 3.3. Microbiota changes

The microbial profiles in the batch cultures are presented in Table 3. Inulin, POS1, POS2 and MCP1 significantly increased Bif164 numbers, with numbers remaining

434	elevated at 48 h (36 h for POS1) compared to time 0. Inulin and POS2 were significantly
435	more bifidogenic than were POS1 and MCP1 throughout the fermentation period. After
436	24 h of fermentation, inulin was more bifidogenic than was POS2. The bifidogenic
437	properties of OpPOS were similar to fructo-oligosaccharides, as reported previously
438	(Manderson, et al., 2005). A rise in Lab158 level was obtained with POS2 through 48 h,
439	inulin through 36 h and POS1 through 24 h of fermentation.
440	Our results confirm the previously reported correlation between arabinose content
441	and bifidogenic properties (Manderson, et al., 2005; Onumpai, Kolida, Bonnin, & Rastall,
442	2011) since POS2 and OpPOS exerted higher stimulation of Bif164 than did POS1 and
443	MCP. The pectic oligosaccharide MW and DE did not affect their bifidogenic properties
444	since POS1 and MCP1 were equally bifidogenic. However, all pectic substrates
445	evaluated were bifidogenic. Therefore, structural diversity in pectic prebiotics is possible
446	as long as significant arabino- and galacto-oligosaccharide content is present.
447	Bifidogenic POS activity was the only prebiotic property previously reported (Manderson,
448	et al., 2005; Onumpai, Kolida, Bonnin, & Rastall, 2011) and this is the first report of POS
449	selecting for higher lactobacillus levels during mixed batch faecal fermentation.
450	Erec482 levels increased with MCP1 through 36 h and with inulin at 24 h (Table
451	3). OpPOS was previously reported to enhance Erec482 counts and butyrate production
452	during human faecal fermentation and Eubacterium rectale is known to produce butyrate
453	(Manderson, et al., 2005). In our analysis, MCP1 Erec482 numbers did not correlate with
454	butyrate concentration, since MCP1 produced less butyrate than inulin did. In other
455	treatments, Erec482 counts remained at the inocula levels. MCP1 might increase non-
456	butyrate producing-bacteria detected by the Erec482 probe and increases in butyrate

levels produced by other substrates may be due to faecal bacteria besides Eubacterium

457

479

158	rectale.
159	The significant increase in Bac303 numbers on all substrates through 48 h of
160	fermentation (Table 3) agreed well with data published previously (Onumpai, Kolida,
161	Bonnin, & Rastall, 2011). Bacteroides have the ability to utilize pectin and many
162	bacteroides strains isolated from human faeces can produce various pectinolytic enzymes,
163	including polygalacturonase, pectin methylesterase, extracellular and cell-associated
164	pectate lyase (Bayliss & Houston, 1984; Dekker & Palmer, 1981; Jensen & Canale-
165	Parola, 1986). Chis150 numbers rose on MCP1 through 36 h, POS2 through 24 h and
166	inulin at 10 h. Bac303 and Chis150 groups include pathogens. In a previous in vitro
167	study of POS (Manderson, et al., 2005; Olano-Martin, Williams, Gibson, & Rastall,
168	2003), Chis150 and Bac303 numbers remained at the initial level while Bif164 counts
169	significantly increased. The different results might be explained partly by carbohydrate
170	structural differences or microbial variation in faecal samples.
171	Ato291 levels increased with MCP1 and inulin through 48 h, POS2 through 36 h
172	and POS1 at 48 h. Atopobium is grouped within the actinomycetes, which can produce
173	lactic acid (Jovita, Collins, Sjoden, & Falsen, 1999); it is one of the predominant bacterial
174	groups in adult faeces (Harmsen, Wildeboer-Veloo, Grijpstra, Knol, Degener, & Welling,
175	2000), and has been observed in a human trial of very long chain inulin from globe
176	artichoke (DP 50-103) (Costabile, Kolida, Klinder, Gietl, Bauerlein, Frohberg, et al.,
177	2010). However, the role of this bacterium in human gut health is not yet established.
178	The total bacterial concentrations of the samples obtained from the pH-

temperature controlled stirred-batch fermentation, using POS1, POS2, MCP1 and inulin

as carbon sources, were measured by DAPI staining. The data supported our findings shown in Table 3 and are presented in Supplement 1.

482

480

481

3.4. Anti-bacterial adhesion activity of POS in HT29 cells

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

483

We previously showed that OpPOS inhibited the adhesion of enteropathogenic E. coli and verotoxigenic E. coli strains to HT29 cells, by 50%, at a concentration of 0.15 to In this study, we showed that five pectic 0.46 mg/ml (Rhoades, et al., 2008). oligosaccharides (POS1, POS2, OpPOS, MCP1 and MCP2) displayed anti-adhesion activity to some degree against the Shiga toxin-producing E. coli O157:H7 in HT29 cells. Our results confirmed the previously reported correlation between oligogalacturonic acid content and inhibition of E. coli adhesion (Guggenbichler, De Bettignies-Dutz, Meissner, Schellmoser, & Jurenitsch, 1997) since POS1 had the highest anti-adhesion activity throughout the 0.005 - 5 mg/ml concentration range (Table 4) and it had a high GalA:Rha ratio (Table 1). MCP1 and MCP2 also had high GalA:Rha ratios and exhibited anti-adhesion activity equivalent to POS1 in the 0.8-2.5 mg/ml concentration These pectic substrates had similar monosaccharide compositions, lowest range. molecular weights and low degree of esterification with the exception of POS1, which had intermediate degree of esterification, indicating that smaller, deesterified structures are important for anti-adhesion activity. OpPOS had the lowest GalA:Rha ratio of the pectic substrates but minor amounts of unsaturated oligogalacturonic acids present in this sample may have contributed to its anti-adhesion activity in the lower oligosaccharide concentration range (0.005 - 0.5 mg/ml) where the greatest anti-adhesion activity (50 - 90%)

inhibition of E. coli O157:H7 adhesion) was observed. The relatively high degree of
esterification in OpPOS limited its anti-adhesive activity at 0.5 mg/ml and higher
concentrations.

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

The adhesion of E. coli STEC strains to human cells involves multiple mechanisms, including intimin (McKee, Melton-Celsa, Moxley, Francis, & O'Brien, 1995), E. coli common pilus (Rendon, Saldana, Erdem, Monteiro-Neto, Vazquez, Kaper, et al., 2007) and type IV pilus (Xicohtencatl-Cortes, Monteiro-Neto, Ledesma, Jordan, Francetic, Kaper, et al., 2007). High E. coli O157:H7 anti-adhesion activity, correlated with the lower range of oligosaccharide concentrations, has been reported previously for OpPOS (Rhoades, et al., 2008) and cranberry xyloglucan (Hotchkiss, et al., 2015). We recently reported that cranberry xyloglucan oligosaccharides were inhibitory to the adhesion of an STEC strain ATCCBAA-1883 on HT29 cells at low concentrations (0.001-0.1 mg/ml) (Hotchkiss, et al., 2015). However, xyloglucan oligosaccharides had much higher affinity for type 1 fimbriated uroepithelial E. coli that are specifically inhibited by mannose-containing oligosaccharides (Hotchkiss, et al., 2015). Pectin-like acidic polysaccharide from the root of Panax ginseng, which consists primarily of galacturonic and glucuronic acids along with rhamnose, arabinose, and galactose as minor components, exerted a selective anti-adhesive effect against pathogenic bacteria Actinobacillus actinomycetemcomitans, Propionibacterium acnes and Staphylococcus aureus while having no effects on beneficial and commensal bacteria Lactobacillus acidophilus, Escherichia coli or Staphylococcus epidermidis (Lee, Shim, Lee, Kim, Chung, & Kim, 2006). Our results with POS1, POS2, MCP1, and MCP2 confirmed other reports (Olano-Martin, Williams, Gibson, & Rastall, 2003; Rhoades, et al., 2008)

526	that pectic oligosaccharides block the specific interaction required for adhesion of P-
527	fimbriated E. coli to human epithelial cells. It is known that P-fimbriated E. coli and
528	Stxs, produced by STEC, utilize the same α -Gal-(1-4)- β -Gal terminal oligosaccharide
529	receptor to adhere to epithelial cells. The mechanism of POS inhibition of P-fimbriated
530	<i>E. coli</i> adhesion remains unknown, since α-Gal-(1-4)-β-Gal was not observed in the
531	structures of our POSs, and receptor mimicry is unlikely to be involved.
532	
533	3.5. rRNA depurination by Stx2 was measured by the novel TaqMan RT-qPCR method
534	
535	To investigate whether the anti-E. coli O157:H7 adhesion activity of orange POSs
536	in HT29 cells could result in reduction of Stx cytotoxicity, we first developed a TaqMan
537	probe-based RT-qPCR analysis to measure the rRNA depurination caused by pure Stx2
538	holotoxin. Due to the specific removal of a single adenine (depurination) from the SRL
539	of the large subunit of rRNA by Stx, we took advantage of the creation of the $T \to A$
540	transversion when cDNA is synthesized by reverse transcriptase, using depurinated
541	rRNA as the template, and designed two TaqMan probes. The first was the SRL probe
542	(T1) that could measure the level of un-depurinated, intact rRNA when paired with
543	depurination forward (Dep F, P5) and depurination reverse (Dep R, P6) primers (Fig. 1a
544	and Supplement 2). The second TaqMan probe was the SRLm probe (T3) that could
545	measure the depurinated rRNA level when paired with Dep F and Dep R primers (Fig. 1a
546	and Supplement 2).
547	After HT29 cells were treated with pure Stx2 holotoxin (50 ng/ml) for 24 h, total
548	RNA was isolated and cDNA was produced by reverse transcriptase, using random

549	primers. Stx2 at 50 ng/ml has been shown to cause rRNA depurination of Vero cells
550	(Pang, et al., 2011); we used the established dual primer extension method to determine
551	whether Stx2-treated HT29 cells were depurinated under the experimental conditions. As
552	shown in Fig. 1b, the Stx2-treated HT29 cells produced the predicted depurination band
553	of 72 bases by the P2 (Dep) primer as well as the control band of 99 bases by the P1 (28S)
554	primer, compared to the untreated cells that produced only the control 28S band.
555	To measure rRNA depurination caused by Stx2 in HT29 cells by our novel
556	TaqMan probe-based RT-qPCR method, the amplification efficiencies of Dep F (P5)/Dep
557	R (P6) primers and SRL (T2), SRLm (T3) TaqMan probes for non-depurinated and
558	depurinated rRNA, and 28S F (P3)/28S R (P4)/28S probe (T1) for total 28S rRNA, were
559	first validated. The cDNAs from the untreated and Stx2-treated cells were serial-diluted.
560	The cDNA serial dilutions from the untreated cells were amplified by Dep F/Dep R and
561	the SRL probe, and the cDNA serial dilutions from the Stx2-treated cells were amplified
562	by Dep F/Dep R and the SRLm probe. Additionally, the cDNA serial dilutions from the
563	untreated cells were amplified by the 28S F/28S R/28S probe. Fig. 1c shows that the
564	intercept and R ² value were -3.476 and 0.9995 for Dep F/Dep R/SRL, -3.46 and 0.9981
565	for Dep F/Dep R/SRLm, and -3.652 and 0.9988 for 28S rRNA (as the endogenous
566	control), indicating that the non-depurinated rRNA, depurinated rRNA and total 28S
567	rRNA were equally efficiently amplified by our designed primers and TaqMan probes.
568	The 1:100-diluted cDNA samples from the Stx2-treated and untreated (control,
569	Ctr) HT29 cells were amplified by the primers/TaqMan probe sets for the three gene
570	targets, SRLm (representing the depurinated rRNA), SRL (representing the non-
571	depurinated rRNA) and 28S (representing the total rRNA). The average threshold cycle

572	(Ct) numbers from triplicates were used to calculate the fold-change of SRLm and SRL
573	levels in Stx2-treated HT29 cells (Stx2 sample) compared to the untreated (Ctr sample),
574	relative to the level of 28S (Supplement 3). Because not all of the rRNA molecules are
575	depurinated by Stx2, the ratio of the SRLm level over that of SRL would represent the
576	level of rRNA depurination. A higher ratio of SRLm/SRL indicates a higher level of
577	rRNA depurination in the cells. Supplement 3 shows that the ratio of SRLm/SRL in the
578	Stx2-treated cells was 39.7.
579	Following ingestion of STEC, the bacterial cells colonize human intestines and
580	produce Stxs, which then interact with glycolipid Gb3 receptor and become internalized
581	into the intestinal epithelial cells (Hurley, Jacewicz, Thorpe, Lincicome, King, Keusch, et
582	al., 1999). Therefore, prebiotics, food constituents or inhibitors that can prevent the
583	colonization and the Stx internalization will be of great advantage to prevent the
584	detrimental effects of STEC and Stxs. Our results showed that the primer/TaqMan probe
585	sets that we designed for the SRLm, SRL and 28S gene targets were able to sensitively
586	quantify the levels of rRNA depurination caused by Stx2 in HT29 cells (Fig. 1a and
587	Supplement 3).
588	
589	3.6. Orange POSs reduced the Stx2 rRNA depurination in HT29 cells
590	
591	HT29 cells have been shown to be intoxicated by pure Stx holotoxins (Olano-
592	Martin, Williams, Gibson, & Rastall, 2003; Rhoades, et al., 2008). To determine if
593	orange POSs could directly interact with Stx2 and inhibit its internalization into cells, we

incubated orange POSs with Stx2 and then measured the reduction of rRNA depurination

594

595	in H129 cells. For this testing, we selected POS1 and MCP2 for the best performance in
596	the anti-bacterial adhesion assay; we also selected OpPOS as the acid preparation of
597	orange POS, and we selected POS2 as the one with the lowest anti-bacterial adhesion
598	activity (Table 4). For the "pre-culture (PC)" samples, POS1, MCP2, OpPOS and POS2,
599	at different concentrations, were incubated with 5 ng of Stx2 for 1 h at room temperature
600	before being added to HT29 cells. For the "co-culture (CC)" samples, these four orange
601	POSs were mixed with 5 ng of Stx2 and added directly to HT29 cells. The addition of
602	POSs alone to HT29 cells did not cause cell death, as measured by the MTS assay
603	(Promega, Madison, WI) (data not shown).
604	After 24 h of treatment, HT29 cells were lysed; total RNAs were isolated, RT-
605	and qPCR reactions were performed with the primer/TaqMan sets for SRLm, SRL and
606	28S gene targets (Supplement 2). The ratios of SRLm/SRL were calculated, as
607	mentioned above, and compared to that of the Stx2-treated cells. Our results showed that
608	all four POSs reduced the Stx2 rRNA depurination when co-cultured with Stx2 in HT29
609	cells (Table 5). The best performer in anti-adhesion assay, POS1, displayed the highest
610	reduction in the Stx2 rRNA depurination in a dose-dependent manner. More than 44%
611	reduction of rRNA depurination was achieved when POS1 at 100 μg/ml concentration
612	was co-cultured with Stx2. POS1 was also the only one that could reduce Stx2 rRNA
613	depurination when pre-incubated with Stx2 at concentration of 10 and 100 µg/ml;
614	however, at much lower levels, 3.43% and 6.59%, respectively.
615	

3.7. Orange POS1 competed with Stx2 to bind to Gb3 on HT29 cells

The pentamer of StxB subunits binds to the glycolipid globotriaosylceramide
(Gb3) receptor on the human cell surface to get StxA subunit internalized (Di, Kyu,
Shete, Saidasan, Kahn, & Tumer, 2011; Jacewicz, Clausen, Nudelman, Donohue-Rolfe,
& Keusch, 1986). Our results, above, demonstrated that all four POSs reduced the Stx2
depurination of HT29 rRNA when co-cultured with Stx2, suggesting that POSs might
compete with Stx2 for binding sites on the HT29 cell surface, thus blocking the entry of
Stx2A into cells. We devised a competition ELISA assay to test whether POS1 could
compete with Stx2 to bind to Gb3. Our data showed that, when POS1 was co-incubated
with Stx2, it reduced the interaction of Stx2 with Gb3 coated in the wells of the 96-well
plate. This reduction was also dose-dependent for POS1. An average of 22.1%, 29.2%
and 38.2% reduction was achieved with POS1 at 0.02, 0.2 and 1 mg/ml, respectively.
POS1 could also reduce the interaction between Stx2 and Gb3 dose-dependently after
pre-incubation with Stx2 at room temperature for 1 h, although at lower levels
(Supplement 4). This result suggests that POS1 could not only compete with the Stx2 B-
subunit to bind to Gb3; it might also damage Stx2 in some way to reduce its cytotoxicity.

4. Conclusion

The utilization of oligosaccharides derived from agricultural by-products to selectively stimulate the growth of beneficial bacteria and inhibit bacterial attachment of pathogens has proven successful for a number of pectic oligosaccharide *in vitro*. Our investigation suggests that different pectic oligosaccharide compositions, based on the extraction method, origin, molecular weight and degree of esterification, exhibit

consistent in vitro prebiotic activity. This investigation reaffirmed two bioactivity
structure-function relationships that arabinose-rich rhamnogalacturonic acids are
responsible for in vitro prebiotic activity and oligogalacturonic acids are responsible for
STEC anti-adhesion activity. Our results report, for the first time, that pectic
oligosaccharides select for lactobacilli, as well as bifidobacteria, and that low molecular
weight deesterified structures enhance STEC anti-adhesive activity. Before any claims
for POSs to be functional food ingredients can be made, more study is needed and their
efficacy in human volunteer trials must also be established. These oligosaccharides have
the potential, in the near future, to join the arsenal of drugs for the therapy of bacterial
diseases and health-promoting bioactive food ingredients.

Acknowledgement

The authors would like to acknowledge EcoNugenics Inc. for providing pectic oligosaccharide and modified citrus pectin samples used in our study. The authors would like to thank Stephanie Simon for conducting the methanolysis for the monosaccharide analysis.

658	References
659	
660	Bayliss CE, Houston AP. Characterization of plant polysaccharide- and mucin-
661	fermenting anaerobic bacteria from human feces. Applied and environmental
662	microbiology, 1984; 48(3): 626-632.
663	Costabile A, Kolida S, Klinder A, Gietl E, Bauerlein M, Frohberg C, Landschutze V,
664	Gibson GR. A double-blind, placebo-controlled, cross-over study to establish the
665	bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara
666	scolymus) in healthy human subjects. British Journal of Nutrition, 2010; 104(7):
667	1007-1017.
668	Dekker J, Palmer JK. Enzymatic degradation of the plant cell wall by a Bacteroides of
669	human fecal origin. Journal of Agricultural and Food Chemistry, 1981; 29(3): 480-
670	484.
671	Di R, Kyu E, Shete V, Saidasan H, Kahn PC, Tumer NE. Identification of amino acids
672	critical for the cytotoxicity of Shiga toxin 1 and 2 in Saccharomyces cerevisiae.
673	Toxicon, 2011; 57(4): 525-539.
674	Dongowski G, Lorenz A. Unsaturated oligogalacturonic acids are generated by in vitro
675	treatment of pectin with human faecal flora. Carbohydrate research, 1998; 314(3-4):
676	237-244.
677	Eliaz I, Hotchkiss AT, Fishman ML, Rode D. The effect of modified citrus pectin on
678	urinary excretion of toxic elements. Phytotherapy Research, 2006; 20(10): 859-864.

679	Fishman ML, Chau HK, Cooke PH, Hotchkiss AT, Jr. Global structure of microwave-
680	assisted flash-extracted sugar beet pectin. Journal of Agricultural and Food
681	Chemistry, 2008; 56(4): 1471-1478.
682	Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW. Variations of
683	bacterial populations in human feces measured by fluorescent in situ hybridization
684	with group-specific 16S rRNA-targeted oligonucleotide probes. Applied and
685	environmental microbiology, 1998; 64(9): 3336-3345.
686	Guggenbichler JP, De Bettignies-Dutz A, Meissner P, Schellmoser S, Jurenitsch J.
687	Acidic oligosaccharides from natural sources block adherence of Escherichia coli on
688	uroepithelial cells. Pharmacy and Pharmacology Letters, 1997; 7: 35-38.
689	Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review
690	article: the role of butyrate on colonic function. Alimentary Pharmacology and
691	Therapeutics, 2008; 27(2): 104-119.
692	Harmsen HJ, Elfferich P, Schut F, Welling, G. W. A 16S rRNA-targeted probe for
693	detection of lactobacilli and enterococci in fecal samples by fluorescent in situ
694	hybridization. Microbial Ecology in Health and Disease, 1999; 11: 3-12.
695	Harmsen HJ, Wildeboer-Veloo AC, Grijpstra J, Knol J, Degener JE, Welling GW.
696	Development of 16S rRNA-based probes for the Coriobacterium group and the
697	Atopobium cluster and their application for enumeration of Coriobacteriaceae in
698	human feces from volunteers of different age groups. Applied and environmental
699	microbiology, 2000; 66(10): 4523-4527.
700	Hotchkiss AT, Nunez A, Strahan GD, Chau H, White A, Marais J, Hom K, Vakkalanka
701	MS, Di R, Yam KL, Khoo C. Cranberry xyloglucan structure and inhibition of

702	Escherichia coli adhesion to epithelial cells. Journal of Agricultural and Food
703	Chemistry, 2015.
704	Hurley BP, Jacewicz M, Thorpe CM, Lincicome LL, King AJ, Keusch GT, Acheson
705	DW. Shiga toxins 1 and 2 translocate differently across polarized intestinal epithelial
706	cells. Infection and immunity, 1999; 67(12): 6670-6677.
707	Jacewicz M, Clausen H, Nudelman E, Donohue-Rolfe A, Keusch GT. Pathogenesis of
708	shigella diarrhea. XI. Isolation of a shigella toxin-binding glycolipid from rabbit
709	jejunum and HeLa cells and its identification as globotriaosylceramide. Journal of
710	Experimental Medicine, 1986; 163(6): 1391-1404.
711	Jensen NS, Canale-Parola E. Bacteroides pectinophilus sp. nov. and Bacteroides
712	galacturonicus sp. nov.: two pectinolytic bacteria from the human intestinal tract.
713	Applied and environmental microbiology, 1986; 52(4): 880-887.
714	Jovita MR, Collins MD, Sjoden B, Falsen E. Characterization of a novel Atopobium
715	isolate from the human vagina: description of Atopobium vaginae sp. nov.
716	International Journal of Systemic Bacteriology, 1999; 49: 1573-1576.
717	Kamau E, Alemayehu S, Feghali KC, Tolbert LS, Ogutu B, Ockenhouse CF.
718	Development of a TaqMan Allelic Discrimination assay for detection of single
719	nucleotides polymorphisms associated with anti-malarial drug resistance. Malaria
720	journal, 2012; 11: 23.
721	Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MH, Welling
722	GW. Quantitative fluorescence in situ hybridization of <i>Bifidobacterium</i> spp. with
723	genus-specific 16S rRNA-targeted probes and its application in fecal samples.
724	Applied and environmental microbiology, 1995; 61(8): 3069-3075.

725 Lee JH, Shim JS, Lee JS, Kim MK, Chung MS, Kim KH. Pectin-like acidic 726 polysaccharide from Panax ginseng with selective antiadhesive activity against 727 pathogenic bacteria. Carbohydrate research, 2006; 341(9): 1154-1163. 728 Li XP, Baricevic M, Saidasan H, Tumer NE. Ribosome depurination is not sufficient for 729 ricin-mediated cell death in Saccharomyces cerevisiae. Infection and immunity, 2007; 730 75(1): 417-428. Manderson K, Pinart M, Tuohy KM, Grace WE, Hotchkiss AT, Widmer W, Yadhav MP, 731 732 Gibson GR, Rastall RA. In vitro determination of prebiotic properties of 733 oligosaccharides derived from an orange juice manufacturing by-product stream. 734 Applied and environmental microbiology, 2005; 71(12): 8383-8389. Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH. Application of a suite of 735 736 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the 737 phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology, 1996; 142 (Pt 5): 1097-1106. 738 Maxwell EG, Colquhoun IJ, Chau HK, Hotchkiss AT, Waldron KW, Morris VJ, 739 740 Belshaw NJ. Rhamnogalacturonan I containing homogalacturonan inhibits colon cancer cell proliferation by decreasing ICAM1 expression. Carbohydrate polymers, 741 2015; 132: 546-553. 742 743 McKee ML, Melton-Celsa AR, Moxley RA, Francis DH, O'Brien AD. 744 Enterohemorrhagic Escherichia coli O157:H7 requires intimin to colonize the 745 gnotobiotic pig intestine and to adhere to HEp-2 cells. Infection and immunity, 1995; 746 63(9): 3739-3744.

747 Melchior WB, Jr., Tolleson WH. A functional quantitative polymerase chain reaction 748 assay for ricin, Shiga toxin, and related ribosome-inactivating proteins. Analytical 749 Biochemistry, 2010; 396(2): 204-211. 750 Olano-Martin E, Gibson GR, Rastell RA. Comparison of the in vitro bifidogenic 751 properties of pectins and pectic-oligosaccharides. Journal of applied microbiology, 752 2002; 93(3): 505-511. 753 Olano-Martin E, Williams MR, Gibson GR, Rastall RA. Pectins and pectic-754 oligosaccharides inhibit Escherichia coli O157:H7 Shiga toxin as directed towards 755 the human colonic cell line HT29. FEMS Microbiology Letters, 2003; 218(1): 101-756 105. 757 Onumpai C, Kolida S, Bonnin E, Rastall RA. Microbial utilization and selectivity of 758 pectin fractions with various structures. Applied and environmental microbiology, 759 2011; 77(16): 5747-5754. 760 Pang YP, Park JG, Wang S, Vummenthala A, Mishra RK, McLaughlin JE, Di R, Kahn 761 JN, Tumer NE, Janosi L, Davis J, Millard CB. Small-molecule inhibitor leads of 762 ribosome-inactivating proteins developed using the doorstop approach. PLoS One, 2011; 6(3): e17883. 763 764 Pierce M, Kahn JN, Chiou J, Tumer NE. Development of a quantitative RT-PCR assay 765 to examine the kinetics of ribosome depurination by ribosome inactivating proteins 766 using Saccharomyces cerevisiae as a model. RNA, 2011; 17(1): 201-210. 767 Qi PX, Chau HK, Fishman ML, Wickham ED, Hotchkiss AT. Investigation of molecular 768 interactions between beta-lactoglobulin and sugar beet pectin by multi-detection HPSEC. Carbohydrate polymers, 2014; 107: 198-208. 769

770	Ramachandran C, Wilk BJ, Hotchkiss A, Chau H, Eliaz I, Melnick SJ. Activation of
771	human T-helper/inducer cell, T-cytotoxic cell, B-cell, and natural killer (NK)-cells
772	and induction of natural killer cell activity against K562 chronic myeloid leukemia
773	cells with modified citrus pectin. BMC complementary and alternative medicine,
774	2011; 11: 59.
775	Rendon MA, Saldana Z, Erdem AL, Monteiro-Neto V, Vazquez A, Kaper JB, Puente JL
776	Giron JA. Commensal and pathogenic Escherichia coli use a common pilus
777	adherence factor for epithelial cell colonization. Proceedings of the National
778	Academy of Sciences of the United States of America, 2007; 104(25): 10637-10642
779	Rhoades JR, Manderson K, Wells A, Hotchkiss AT, Jr., Gibson GR, Formentin K, Beer
780	M, Rastall RA. Oligosaccharide-mediated inhibition of the adhesion of pathogenic
781	Escherichia coli strains to human gut epithelial cells in vitro. Journal of Food
782	Protection, 2008; 71(11): 2272-2277.
783	Sandvig K, Grimmer S, Lauvrak SU, Torgersen ML, Skretting G, van Deurs B, Iversen
784	TG. Pathways followed by ricin and Shiga toxin into cells. Histochemistry and Cell
785	Biology, 2002; 117(2): 131-141.
786	Scallan E, Hoekstra RM, ANgulo FJ, Tauxe RV, Widdowson M-A, Roy SL, Jones JL,
787	Griffin PM. Foodborne illness acquired in the United States-major pathogens.
788	Emerging Infectious Diseases, 2011; 17: 7-15.
789	Titgemeyer EC, Bourquin LD, Fahey GC, Jr., Garleb KA. Fermentability of various
790	fiber sources by human fecal bacteria in vitro. The American journal of clinical
791	nutrition, 1991; 53(6): 1418-1424.

fecal
per
on,

802	Figure legend
803	
804	Fig. 1. (a) Primer and TaqMan probe locations in human 28S rRNA (GenBank accession
805	# NR_003287) for dual primer extension and RT-qPCR amplification. Refer to
806	Supplement 2 for primer (P) and TaqMan (T) probe numbers, names and sequences. (b)
807	Dual primer extension assay to measure 28S rRNA depurination by Stx2 in HT29 cells.
808	Stx2, Stx2-treated HT29 cells; Ctr, untreated cells. (c) Development of the novel
809	TaqMan-based RT-qPCR analysis for 28S rRNA depurination measurement. The

primers and TaqMan probes designed for the SRL, SRLm and 28S gene targets were validated by analyzing the 10-fold dilutions of the RT product of Stx2-treated HT29 cells

variation by until 2016 to 1016 dilutions of the 111 product of 5th2 dedica 11129 cons

in RT-qPCR reactions. The standard curves of these three gene target amplifications are

shown with the amplification equations and R^2 values.

814

1 Table 1

2 Chemical characterization of orange pectic oligosaccharides.

3						
4	Orange POS	POS1	POS2	MCP1	MCP2	OpPOS
5						
6	Molecular weight					0
7	$(MW \times 10^3)$	72.8	811	9.2	17.7	140.3
8					6	
9	Monosaccharide (mo	le %)			5	
10	Glucose	2.07	3.76	2.17	2.26	5.77
11	Arabinose	3.24	33.7	3.28	4.76	44.2
12	Galactose	11.6	6.85	10.3	19.2	20.2
13	Xylose	1.01	2.04	1.45	1.17	2.69
14	Rhamnose	3.69	3.47	3.53	4.29	3.56
15	Fucose	0.12	0.31	0.13	0.24	0.23
16	Glucuronic acid	0.28	0.66	0.11	0.16	0.46
17	Galacturonic acid	78.0	49.2	79.0	68.0	22.8
18	G					
19	GalA:Rha	21.1	14.2	22.4	15.8	6.42
20	Ara:Rha	0.88	9.71	0.93	1.11	12.4
21	Gal:Rha	3.14	1.97	2.92	4.47	5.68
22						
23	Average % degree	40.1±	42.0±	5.3±	3.3±	66.3±
24	of esterification	0.88	0.61	0.52	0.14	0.2

Table 2

27 Concentration of organic acids in the fermentation samples obtained from the pH- and temperature-controlled stirred-batch fermentations, using

POS 1, POS 2, MCP1 and inulin as carbon sources.

Time	Acetate				Propionate			
	POS 1	POS 2	MCP1	Inulin	POS 1	POS 2	MCP1	Inulin
0h	2.4±1.3	1.9±1.3	2.4±1.7	1.6±1.9	0±0.1	0±0.1	0.1±0.1	0.3±0.4
10h	48.1±28.6	50.1±18.3	52.0±15.6	49.6±15.9	7.7±3.8	9.9±3.6	8.2±2.0	10.0±9.0
24h	62.2±18.4	71.4±17.9	68.4±9.9	68.7±19.1	10.5±2.2	15.1±4.1	11.6±1.8	20.4±12.1
36h	68.1±15.7	76.7±18.4	77.8±12.9	73.1±20.9	12.1±2.1	16.9±3.8	13.4±4.3	24.6±18.1
48h	68.8±18.0	83.6±22.8	82.0±14.5	68.7±20.5	12.6±1.9	18.7±5.0	14.9±4.4	22.3±15.8
Time	Lactate				Formate			
	POS 1	POS 2	MCP1	Inulin	POS 1	POS 2	MCP1	Inulin
0h	0.5±0.5	2.0±2.0	0.5±0.5	0.4±0.6	3.2±0.8	7.2±0.8	2.8±0.5	0.2±0.5
10h	3.2±2.1	3.4±4.4	3.2±2.5	6.1±5.0	5.3±5.5	6.1±6.3	5.9±3.6	2.5±2.9

24h	0.0	6.3±1.9	0.8±0.4	0.0	0.0	0.0	0.0	0.0
36h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
48h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time	Butyrate				Total organic	e acids		
	POS 1	POS 2	MCP1	Inulin	POS 1	POS 2	MCP1	Inulin
0h	0.1±0.1	0.0±0.1	0.1±0.1	0.3±0.4	5.7±2.9	4.9±2.4	5.8±2.4	4.6±2.6
10h	2.2±3.1	3.5±2.9	3.6±3.1	5.8±5.7	66.6±37.7	73.0±26.5	72.9±20.5	74.0±20.2
24h	5.3±3.3 ^b	6.2±4.9 ^b	4.4±3.0 ^b	11.9±4.4 ^a	78.0±24.2	94.0±16.0	84.5±7.3	101±16.5
36h	6.2±3.9 ^b	8.3±4.9 ^{ab}	5.5±2.4 ^b	12.4±3.1 ^a	86.5±19.7	102±24.0	96.7±13.7	110±26.7
48h	7.0±4.0	10.6±6.4	6.5±3.1	12.9±2.8	88.4±21.6	113±30.6	103±16.5	103±24.1

All numbers are means of five samples \pm SD, expressed as mmol/ml. Alphabetical superscript: significantly different among treatments at the same time point. Values in the same row not sharing the same superscript are significantly different ($P \le 0.05$).

Table 3

Bacterial concentrations of the samples obtained from the pH- and temperature-controlled stirred-batch fermentations using POS 1, POS 2, MCP1 and inulin as carbon sources (Bif164: *Bifidobacterium*, Erec 482: *Eubacterium rectale/Clostridium coccoides*, Lab158:

Lactobacillus/Enterococcus, Bac303: Bacteroides/Prevotella, Ato291: Atopobium cluster, Chis150: Clostridium histolyticum).

Time	Bif164				Erec482			
	POS 1	POS 2	MCP1	Inulin	POS 1	POS 2	MCP1	Inulin
0h	7.83±0.24	7.81±0.13	7.78±0.19	7.70±0.28	8.05±0.11	8.05±0.10	8.02±0.18	8.08±0.17
10h	8.11±0.19 ^{b*}	8.67±0.16 ^{a*}	8.24±0.27 ^{b*}	8.66±0.24 ^{a*}	8.30±0.34	8.23±0.33	8.24±0.26*	8.23±0.31
24h	8.10±0.16 ^{b*}	8.68±0.17 ^{a*}	8.18±0.12 ^{b*}	8.82±0.29 ^{a*}	8.20±0.27	8.30±0.30	8.34±0.13*	8.31±0.17*
36h	8.13±0.19 ^{c*}	8.71±0.11 ^{b*}	8.13±0.13 ^{c*}	9.01±0.30 ^{a*}	8.15±0.19	8.18±0.34	8.34±0.12*	8.22±0.15
48h	8.03±0.6°	8.67±0.16 ^{b*}	8.21±0.17 ^{c*}	9.09±0.16 ^{a*}	8.03±0.15	8.08±0.31	8.31±0.17	8.02±0.20
Time	Lab158		,0		Bac303			
	POS 1	POS 2	MCP1	Inulin	POS 1	POS 2	MCP1	Inulin
0h	6.40±0.19	6.40±0.23	6.50±0.19	6.44±0.15	8.04±0.22	7.96±0.24	8.09±0.26	7.98±0.31

10h	6.58±0.26*	6.90±0.20*	6.94±0.37	6.82±0.35*	8.69±0.43*	8.80±0.21*	8.85±0.40*	8.62±0.46*
24h	6.62±0.25 ^{b*}	7.26±0.28 ^{a*}	7.04 ± 0.54^{ab}	$7.28\pm0.60^{a^*}$	9.05±0.35*	9.08±0.33*	9.04±0.23*	9.05±0.24*
36h	6.55±0.54 ^b	7.11±0.57 ^{a*}	6.79±0.45 ^{ab}	7.03±0.51 ^{a*}	8.82±0.35 ^{ab*}	8.89±0.15 ^{ab*}	8.90±0.24 ^{a*}	8.88±0.26 ^{ab*}
48h	6.41±0.38 ^b	6.96±0.35 ^{a*}	6.64±0.41 ^b	7.06±0.64 ^a	8.69±0.28*	8.79±0.18*	8.67±0.32*	8.65±0.38*
Time	Ato291				Chis150			_
Time	POS 1	POS 2	MCP1	Inulin	POS 1	POS 2	MCP1	Inulin
Oh	7.46±0.17	7.43±0.19	7.48±0.16	7.57±0.18	6.07±0.34	6.09±0.39	6.09±0.30	6.07±0.22
10h	7.99±0.60	7.83±0.20*	8.21±0.44*	8.30±0.27*	6.31±0.40 ^b	$6.85\pm0.30^{a^*}$	6.48±0.19 ^{b*}	6.35±0.17 ^{b*}
24h	8.00±0.54	7.95±0.32*	8.32±0.57*	8.37±0.42*	6.46±0.38	6.68±0.27*	6.44±0.32*	6.41±0.34
36h	8.10±0.49	7.98±0.32*	8.36±0.60*	8.33±0.34*	6.11±0.24 ^b	6.40 ± 0.38^{ab}	6.61±0.47 ^{a*}	6.10±0.29 ^b
48h	8.05±0.38*	7.71±0.39	8.27±0.59*	8.15±0.26*	5.87±0.38	6.16±0.41	6.14±0.54	6.06±0.38

38

39

40

All numbers are means of five samples±SD expressed as Log₁₀cells/ml.

^{*:} significant increase from 0h; Alphabetical superscript: significantly different among treatments at the same time point.

Values in the same row not sharing the same superscript are significantly different ($P \le 0.05$).

Table 4

Anti-adhesion activity of POS samples at different concentrations against *E. coli* O157:H7 strain ATCC43895 compared to untreated control sample.

		Adh	esion Relative to C	Control (%)	
mg/mL	POS1	POS2	OpPOS	MCP1	MCP2
0.001	32.9±2.0 ^{a1}	68.02±2 ^{a3}	30.9±1.2 ^{a1}	39.6±1.4 ^{a2}	39.1±1.4 ^{a2}
0.005	13.7±1.5 ^{b1}	47.1±1.5 ^{b3}	8.6±0.6 ^{b1}	39.1±0.7 ^{a2}	35.0±0.7 ^{a2}
0.01	17.4±2.3 ^{b1}	51.5±3 ^{b3}	15.8±0.5 ^{c1}	40.0 ± 1.4^{a2}	38.8±7.8 ^{a2}
0.05	26.0±0.6 ^{c1}	77.6±2 ^{c3}	20.9±1 ^{c1}	47.8±4.2 ^{b2}	40.8±5.7 ^{a2}
0.1	33.3±0.3 ^{c1}	79.0±0.6 ^{c3}	34.5±1.5 ^{ad1}	51.8±2.8 ^{b2}	44.1±7.1 ^{a2}
0.5	40.2±0.3 ^{d1}	94.8±0.2 ^{d4}	83.5±1.4 ^{e3}	55.1±0.7 ^{b2}	52.0±2.8 ^{b2}
0.8	51.1±0 ^{e2}	98.8±0.2 ^{d4}	93.5±2 ^{f4}	61.6±2.8 ^{c3}	37.0±0 ^{a1}
1	56.6±0.2 ^{e1}	100±0.4 ^{d2}	97.1±1 ^{f2}	57.3±1.8 ^{bc1}	57.0±1.1 ^{b1}
2.5	74.0±2 ^{f2}	100 ± 0.8^{d3}	100±0.3 ^{f3}	63.5±2.8 ^{c1}	77.1±1.3 ^{c2}
5	91.3±1 ^{g1}	100±0.4 ^{d2}	100±1.8 ^{f2}	100±0 ^{d2}	100±0 ^{d2}

^{a,b,c,bc,d,e,f,g} indicate significant differences in inhibition of *E. coli* O157:H7 ATCC43895 adhesion relative to the control at different concentrations of the respective samples. ^{1,2,3,4} indicate

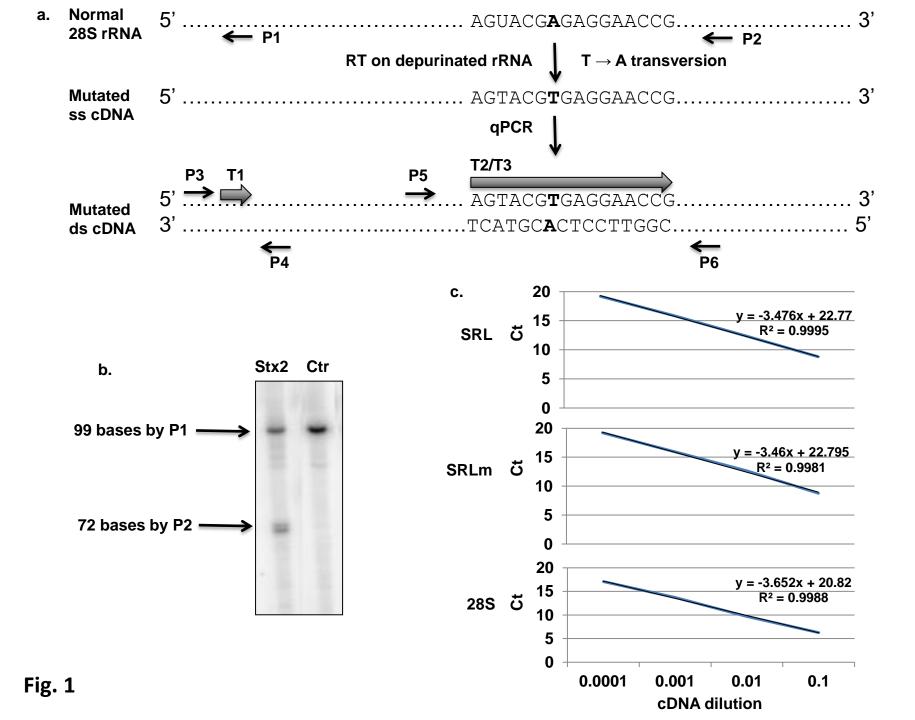

significant difference in anti-adhesive activity across all the oligosaccharides at one particular concentration based on ANOVA statistical analysis (P<0.05). All values are the means ± ACCEPTED MANUSCIPIED MANUSCIPI standard deviation of results obtained with triplicates.

Table 5Reduction of Stx2 depurination activity by citrus pectic oligosaccharides in HT29 cells.

	Average percentage reduction	
	of SRLm/SRL ratio	
Treatment	compared to Stx2-treated cells*	Standard Deviation*
POS1 1 μg/ml PC	0	90
POS1 10 µg/ml PC	3.43	0.64
POS1 100 μg/ml PC	6.59	0.18
POS1 1 µg/ml CC	13.1	5.10
POS1 10 μg/ml CC	37.7	2.45
POS1 100 μg/ml CC	44.1	2.50
MCP2 1 μg/ml PC	0	0
MCP2 10 μg/ml PC	0	0
MCP2 100 μg/ml PC	0	0
MCP2 1 μg/ml CC	13.0	0.17
MCP2 10 μg/ml CC	25.8	0.40
MCP2 100 μg/ml CC	9.51	2.08
POS2 1 µg/ml PC	0	0
POS2 10 μg/ml PC	0	0

POS2 100 μg/ml PC	0		0
POS2 1 μg/ml CC	0		0
POS2 10 μg/ml CC	20.8		5.03
POS2 100 μg/ml CC	24.2		3.74
OpPOS 1 µg/ml PC	0		0
OpPOS 10 μg/ml PC	0		0
OpPOS 100 μg/ml PC	0	0	
OpPOS 1 μg/ml CC	27.9		1.59
OpPOS 10 μg/ml CC	32.6		4.43
OpPOS 100 μg/ml CC	31.3		6.32

^{*:} The average percentage reduction and standard deviation were calculated from the SRLm/SRL ratios of each treatment sample compared to Stx2-treated cells in three independent experiments.

Highlights

- Bifidogenic citrus pectic oligosaccharide (POS) structural diversity was determined.
- Five citrus pectic oligosaccharides were anti-adhesive for Shiga toxin (Stx)-producing *E. coli* O157:H7 binding to human HT29 cells.
- A novel TaqMan-based RT-qPCR assay was developed to measure the human rRNA depurination caused by Stx2.
- Citrus POS samples reduce the cytotoxicity of Stx2 holotoxin in HT29 cells.

