227 research outputs found

    Linguistic meta-theory the formal and empirical conditions of acceptability of linguistic theories and descriptions

    Get PDF
    Most linguists acknowledge, explicitly or implicitly, the relevance of epistemological questions in linguistics but relatively few have given more than a cursory, ad hoc or incomplete consideration to them. The work of one of those few, Jan Mulder, forms the starting point for much of the present discussion. Epistemological considerations arise in many contexts in linguistics and in many guises. It is an epistemological matter whenever we test the adequacy of a description or the acceptability of a theory. Epistemological considerations are latent whenever we discuss the form or the content of linguistic theories and descriptions or their interrelations. The comparison of different approaches to linguistics inevitably raises epistemological questions concerning our approach to linguistics or our presuppositions about it. These questions are of a general nature and transcend questions about particular linguistic theories and descriptions. These epistemological questions force us to consider what we take linguistics to be. In considering questions of the type mentioned we are forced, for example, to analyse what we mean by a "linguistic theory", a "linguistic description" and what phenomena we are aiming to understand. We are, furthermore, forced to analyse the constraints which a scientific attitude places upon linguistic theorising and description-building. It is these questions concerning the acceptability of linguistic theories and descriptions which we call linguistic meta-theory. This thesis falls into five main parts. Firstly, in Chapter One, we consider the nature and scope of linguistic meta-theory. Secondly, in Chapter Two, we look at a number of previous approaches to the subject. Other important contributions are discussed as they arise in the text. Thirdly, in Chapters Three and Four, we consider in detail the major meta-theoretical distinctions in linguistics and their consequences. In particular, we distinguish linguistic theories from linguistic descriptions and discuss the nature of linguistic phenomena. The view is put forward that linguistics is a scientific subject. The meaning of this assertion is analysed and the interrelations of linguistic theories, descriptions and phenomena are considered in the light of this analysis. The main epistemological requirement that is put forward and defended is that of the empiricism of linguistics. Certain changes in our view of the philosophy of science and in our view of the form of linguistic theories and descriptions follow from the conjunction of these major meta-theoretical positions. Fourthly, we consider the main meta-theoretical considerations concerning theories (Chapter Five) and reject a widespread view of linguistic theory as a non-empirical study (Chapter Six) and we consider the main meta-theoretical conditions relating to linguistic descriptions and some practical examples of description -building consonant with the general positions adopted in Chapter Seven. In Chapter Eight, we look at a concrete example of theory-building in the light of the meta-theoretical conditions of acceptability previously set up. We are especially concerned to show how a theory can meet the condition of being "applicable" or "indirectly scientific" through the establishment of acceptable empirical descriptions consonant with the meta-theoretical conditions on descriptions considered earlier. The view that linguistics is a science implies that we must be concerned with the empirical testing of descriptions and, so, the fifth part of the work is devoted to methodology. In Chapter Nine, we defend the role and necessity of methodology in linguistics and set up the logical framework of relations between the methodology and theory descriptions and phenomena. In Chapter Ten, we examine two of the known types of empirical testing and their shortcomings. Finally, in Chapter Eleven, we give an example of the successful and correct application of a methodology in order to bring out the nature of empirical testing and to demonstrate its feasibility within a scientific linguistics of the sort we imagine

    A Theory of time-varying Constants

    Full text link
    We present a flat (K=0) cosmological model, described by a perfect fluid with the ``constants'' G,cG,c and Λ\Lambda varying with cosmological time tt. We introduce Planck\'s ``constant'' \hbar in the field equations through the equation of state for the energy density of radiation. We then determine the behaviour of the ``constants'' by using the zero divergence of the second member of the modified Einstein\'s field equations i.e. div(Gc4Tij+δijΛ)=0,div(\frac{G}{c^{4}}T_{i}^{j}+\delta_{i}^{j}\Lambda)=0, together with the equation of state and the Einstein cosmological equations. Assuming realistic physical and mathematical conditions we obtain a consistent result with c=constant\hbar c=constant. In this way we obtain gauge invariance for the Schr\"{o}dinger equation and the behaviour of the remaining ``constants''Comment: 15 pages, RevTeX

    Multi-Prover Commitments Against Non-Signaling Attacks

    Get PDF
    We reconsider the concept of multi-prover commitments, as introduced in the late eighties in the seminal work by Ben-Or et al. As was recently shown by Cr\'{e}peau et al., the security of known two-prover commitment schemes not only relies on the explicit assumption that the provers cannot communicate, but also depends on their information processing capabilities. For instance, there exist schemes that are secure against classical provers but insecure if the provers have quantum information processing capabilities, and there are schemes that resist such quantum attacks but become insecure when considering general so-called non-signaling provers, which are restricted solely by the requirement that no communication takes place. This poses the natural question whether there exists a two-prover commitment scheme that is secure under the sole assumption that no communication takes place; no such scheme is known. In this work, we give strong evidence for a negative answer: we show that any single-round two-prover commitment scheme can be broken by a non-signaling attack. Our negative result is as bad as it can get: for any candidate scheme that is (almost) perfectly hiding, there exists a strategy that allows the dishonest provers to open a commitment to an arbitrary bit (almost) as successfully as the honest provers can open an honestly prepared commitment, i.e., with probability (almost) 1 in case of a perfectly sound scheme. In the case of multi-round schemes, our impossibility result is restricted to perfectly hiding schemes. On the positive side, we show that the impossibility result can be circumvented by considering three provers instead: there exists a three-prover commitment scheme that is secure against arbitrary non-signaling attacks

    Perturbative analysis of generalized Einstein's theories

    Get PDF
    The hypothesis that the energy-momentum tensor of ordinary matter is not conserved separately, leads to a non-adiabatic expansion and, in many cases, to an Universe older than usual. This may provide a solution for the entropy and age problems of the Standard Cosmological Model. We consider two different theories of this type, and we perform a perturbative analysis, leading to analytical expressions for the evolution of gravitational waves, rotational modes and density perturbations. One of these theories exhibits satisfactory properties at this level, while the other one should be discarded.Comment: 14 pages, Latex fil

    Observational constraints on Rastall's cosmology

    Full text link
    Rastall's theory is a modification of General Relativity, based on the non-conservation of the stress-energy tensor. The latter is encoded in a parameter γ\gamma such that γ=1\gamma = 1 restores the usual νTμν=0\nabla_\nu T^{\mu\nu} = 0 law. We test Rastall's theory in cosmology, on a flat Robertson-Walker metric, investigating a two-fluid model and using the type Ia supernovae Constitution dataset. One of the fluids is pressureless and obeys the usual conservation law, whereas the other is described by an equation of state px=wxρxp_x = w_x\rho_x, with wxw_x constant. The Bayesian analysis of the Constitution set does not strictly constrain the parameter γ\gamma and prefers values of wxw_x close to -1. We then address the evolution of small perturbations and show that they are dramatically unstable if wx1w_x \neq -1 and γ1\gamma \neq 1, i.e. General Relativity is the favored configuration. The only alternative is wx=1w_x = -1, for which the dynamics becomes independent from γ\gamma.Comment: Latex file, 14 pages, 6 figures in eps format. Substantial modifications performed, main conclusions change

    Gravitomagnetism in Metric Theories: Analysis of Earth Satellites Results, and its Coupling with Spin

    Full text link
    Employing the PPN formalism the gravitomagnetic field in different metric theories is considered in the analysis of the LAGEOS results. It will be shown that there are several models that predict exactly the same effect that general relativity comprises. In other words, these Earth satellites results can be taken as experimental evidence that the orbital angular momentum of a body does indeed generate space--time geometry, notwithstanding they do not endow general relativity with an outstanding status among metric theories. Additionally the coupling spin--gravitomagnetic field is analyzed with the introduction of the Rabi transitions that this field produces on a quantum system with spin 1/2. Afterwards, a continuous measurement of the energy of this system is introduced, and the consequences upon the corresponding probabilities of the involved gravitomagnetic field will be obtained. Finally, it will be proved that these proposals allows us, not only to confront against future experiments the usual assumption of the coupling spin--gravotimagnetism, but also to measure some PPN parameters and to obtain functional dependences among them.Comment: 10 page

    Quantum-classical transition in Scale Relativity

    Get PDF
    The theory of scale relativity provides a new insight into the origin of fundamental laws in physics. Its application to microphysics allows us to recover quantum mechanics as mechanics on a non-differentiable (fractal) spacetime. The Schrodinger and Klein-Gordon equations are demonstrated as geodesic equations in this framework. A development of the intrinsic properties of this theory, using the mathematical tool of Hamilton's bi-quaternions, leads us to a derivation of the Dirac equation within the scale-relativity paradigm. The complex form of the wavefunction in the Schrodinger and Klein-Gordon equations follows from the non-differentiability of the geometry, since it involves a breaking of the invariance under the reflection symmetry on the (proper) time differential element (ds - ds). This mechanism is generalized for obtaining the bi-quaternionic nature of the Dirac spinor by adding a further symmetry breaking due to non-differentiability, namely the differential coordinate reflection symmetry (dx^mu - dx^mu) and by requiring invariance under parity and time inversion. The Pauli equation is recovered as a non-relativistic-motion approximation of the Dirac equation.Comment: 28 pages, no figur

    A note on "symmetric" vielbeins in bimetric, massive, perturbative and non perturbative gravities

    Get PDF
    We consider a manifold endowed with two different vielbeins EAμE^{A}{}_{\mu} and LAμL^{A}{}_{\mu} corresponding to two different metrics gμνg_{\mu\nu} and fμνf_{\mu\nu}. Such a situation arises generically in bimetric or massive gravity (including the recently discussed version of de Rham, Gabadadze and Tolley), as well as in perturbative quantum gravity where one vielbein parametrizes the background space-time and the other the dynamical degrees of freedom. We determine the conditions under which the relation gμνEAμLBν=gμνEBμLAνg^{\mu\nu} E^{A}{}_{\mu} L^{B}{}_{\nu} = g^{\mu\nu} E^{B}{}_{\mu} L^{A}{}_{\nu} can be imposed (or the "Deser-van Nieuwenhuizen" gauge chosen). We clarify and correct various statements which have been made about this issue.Comment: 20 pages. Section 7, prop. 6 and 7. added. Some results made more precis

    Scalar models for the generalized Chaplygin gas and the structure formation constraints

    Full text link
    The generalized Chaplygin gas model represents an attempt to unify dark matter and dark energy. It is characterized by a fluid with an equation of state p=A/ραp = - A/\rho^\alpha. It can be obtained from a generalization of the DBI action for a scalar, tachyonic field. At background level, this model gives very good results, but it suffers from many drawbacks at perturbative level. We show that, while for background analysis it is possible to consider any value for α\alpha, the perturbative analysis must be restricted to positive values of α\alpha. This restriction can be circumvented if the origin of the generalized Chaplygin gas is traced back to a self-interacting scalar field, instead of the DBI action. But, in doing so, the predictions coming from formation of large scale structures reduce the generalized Chaplygin gas model to a kind of quintessence model, and the unification scenario is lost, if the scalar field is the canonical one. However, if the unification condition is imposed from the beginning as a prior, the model may remain competitive. More interesting results, concerning the unification program, are obtained if a non-canonical self-interacting scalar field, inspired by Rastall's theory of gravity, is imposed. In this case, an agreement with the background tests is possible.Comment: Latex file, 25 pages, 33 figures in eps format. New section on scalar models. Accepted for publication in Gravitation&Cosmolog
    corecore