28 research outputs found

    Multi-Scale Colour Completed Local Binary Patterns for Scene and Event Sport Image Categorisation

    Get PDF
    The Local Binary Pattern (LBP) texture descriptor and some of its variant descriptors have been successfully used for texture classification and for a few other tasks such as face recognition, facial expression, and texture segmentation. However, these descriptors have been barely used for image categorisation because their calculations are based on the gray image and they are only invariant to monotonic light variations on the gray level. These descriptors ignore colour information despite their key role in distinguishing the objects and the natural scenes. In this paper, we enhance the Completed Local Binary Pattern (CLBP), an LBP variant with an impressive performance on texture classification. We propose five multiscale colour CLBP (CCLBP) descriptors by incorporating five different colour information into the original CLBP. By using the Oliva and Torralba (OT8) and Event sport datasets, our results attest to the superiority of the proposed CCLBP descriptors over the original CLBP in terms of image categorisation

    A New Wavelet Completed Local Ternary Count (WCLTC) for Image Classification

    Get PDF
    To overcome noise sensitivity and increase the discriminative quality of the Local Binary Pattern, a Completed Local Ternary Count (CLTC) was developed by combining the Local Ternary Pattern (LTP) with the Completed Local Binary Count (CLBC) (LBP). Furthermore, by integrating the proposed CLTC with the Redundant Discrete Wavelet Transform (RDWT) to construct a Wavelet Completed Local Ternary Count, the proposed CLTC's discriminative property is improved (WCLTC). As a result, more accurate local texture feature capture inside the RDWT domain is possible. The proposed WCLTC is utilised to perform texture and medical image classification tasks. The WCLTC performance is evaluated using two benchmark texture datasets, CUReT and Outex, as well as three medical picture databases, 2D Hela, VIRUS Texture, and BR datasets. With several of these datasets, the experimental findings demonstrate a remarkable classification accuracy. In several cases, the WCLTC performance outperformed the prior descriptions. With the 2D Hela, CUReT, and Virus datasets, the WCLTC achieves the highest classification accuracy of 96.91%, 97.04 percent, and 72.89%, respectively

    Early Diagnosis of Brain Tumour MRI Images Using Hybrid Techniques between Deep and Machine Learning.

    Get PDF
    Cancer is considered one of the most aggressive and destructive diseases that shortens the average lives of patients. Misdiagnosed brain tumours lead to false medical intervention, which reduces patients' chance of survival. Accurate early medical diagnoses of brain tumour are an essential point for starting treatment plans that improve the survival of patients with brain tumours. Computer-aided diagnostic systems have provided consecutive successes for helping medical doctors make accurate diagnoses and have conducted positive strides in the field of deep and machine learning. Deep convolutional layers extract strong distinguishing features from the regions of interest compared with those extracted using traditional methods. In this study, different experiments are performed for brain tumour diagnosis by combining deep learning and traditional machine learning techniques. AlexNet and ResNet-18 are used with the support vector machine (SVM) algorithm for brain tumour classification and diagnosis. Brain tumour magnetic resonance imaging (MRI) images are enhanced using the average filter technique. Then, deep learning techniques are applied to extract robust and important deep features via deep convolutional layers. The process of combining deep and machine learning techniques starts, where features are extracted using deep learning techniques, namely, AlexNet and ResNet-18. These features are then classified using SoftMax and SVM. The MRI dataset contains 3,060 images divided into four classes, which are three tumours and one normal. All systems have achieved superior results. Specifically, the AlexNet+SVM hybrid technique exhibits the best performance, with 95.10% accuracy, 95.25% sensitivity, and 98.50% specificity

    Multi-method analysis of medical records and mri images for early diagnosis of dementia and alzheimer’s disease based on deep learning and hybrid methods

    Get PDF
    Dementia and Alzheimer’s disease are caused by neurodegeneration and poor commu-nication between neurons in the brain. So far, no effective medications have been discovered for dementia and Alzheimer’s disease. Thus, early diagnosis is necessary to avoid the development of these diseases. In this study, efficient machine learning algorithms were assessed to evaluate the Open Access Series of Imaging Studies (OASIS) dataset for dementia diagnosis. Two CNN models (AlexNet and ResNet-50) and hybrid techniques between deep learning and machine learning (AlexNet+SVM and ResNet-50+SVM) were also evaluated for the diagnosis of Alzheimer’s disease. For the OASIS dataset, we balanced the dataset, replaced the missing values, and applied the t-Distributed Stochastic Neighbour Embedding algorithm (t-SNE) to represent the high-dimensional data in the low-dimensional space. All of the machine learning algorithms, namely, Support Vector Machine (SVM), Decision Tree, Random Forest and K Nearest Neighbours (KNN), achieved high performance for diagnosing dementia. The random forest algorithm achieved an overall accuracy of 94% and precision, recall and F1 scores of 93%, 98% and 96%, respectively. The second dataset, the MRI image dataset, was evaluated by AlexNet and ResNet-50 models and AlexNet+SVM and ResNet-50+SVM hybrid techniques. All models achieved high performance, but the performance of the hybrid methods between deep learning and machine learning was better than that of the deep learning models. The AlexNet+SVM hybrid model achieved accuracy, sensitivity, specificity and AUC scores of 94.8%, 93%, 97.75% and 99.70%, respectively

    Deep Learning and Machine Learning for Early Detection of Stroke and Haemorrhage

    Get PDF
    Stroke and cerebral haemorrhage are the second leading causes of death in the world after ischaemic heart disease. In this work, a dataset containing medical, physiological and environmental tests for stroke was used to evaluate the efficacy of machine learning, deep learning and a hybrid technique between deep learning and machine learning on theMagnetic Resonance Imaging (MRI) dataset for cerebral haemorrhage. In the first dataset (medical records), two features, namely, diabetes and obesity, were created on the basis of the values of the corresponding features. The t-Distributed Stochastic Neighbour Embedding algorithm was applied to represent the high-dimensional dataset in a low-dimensional data space. Meanwhile, the Recursive Feature Elimination algorithm (RFE) was applied to rank the features according to priority and their correlation to the target feature and to remove the unimportant features. The features are fed into the various classification algorithms, namely, Support Vector Machine (SVM), K Nearest Neighbours (KNN), Decision Tree, Random Forest, and Multilayer Perceptron. All algorithms achieved superior results. The Random Forest algorithm achieved the best performance amongst the algorithms; it reached an overall accuracy of 99%. This algorithm classified stroke cases with Precision, Recall and F1 score of 98%, 100% and 99%, respectively. In the second dataset, the MRI image dataset was evaluated by using the AlexNet model and AlexNet+SVM hybrid technique. The hybrid model AlexNet+SVM performed is better than the AlexNet model; it reached accuracy, sensitivity, specificity and Area Under the Curve (AUC) of 99.9%, 100%, 99.80% and 99.86%, respectively

    Digital verification and authentication system for test certificates (DVASTC-COVID-19)

    Get PDF
    Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. The Covid-19 pandemic is a social and an economic crisis just as much as it is a health crisis – its repercussions, severe and far-reaching, are being felt across the world. The COVID-19 negative certificate or test results now becomes very important document for a lot of activities such as air travelling. A lot of cases had been published in the world about fake and change COVID-19 certificates/test results, especially in the airports. The certificates should be provided to permit travelling and immigration. Several approaches may be used to falsify the COVID-19 documents. For example, documents may be copied using copying machines, remade using word processing software or scanned, digitally modified and finally printed

    Multi-method diagnosis of CT images for rapid detection of intracranial hemorrhages based on deep and hybrid learning

    Get PDF
    Intracranial hemorrhaging is considered a type of disease that affects the brain and is very dangerous, with high-mortality cases if there is no rapid diagnosis and prompt treatment. CT images are one of the most important methods of diagnosing intracranial hemorrhages. CT images contain huge amounts of information, requiring a lot of experience and taking a long time for proper analysis and diagnosis. Thus, artificial intelligence techniques provide an automatic mechanism for evaluating CT images to make a diagnosis with high accuracy and help radiologists make their diagnostic decisions. In this study, CT images for rapid detection of intracranial hemorrhages are diagnosed by three proposed systems with various methodologies and materials, where each system contains more than one network. The first system is proposed by three pretrained deep learning models, which are GoogLeNet, ResNet-50 and AlexNet. The second proposed system using a hybrid technology consists of two parts: the first part is the GoogLeNet, ResNet-50 and AlexNet models for extracting feature maps, while the second part is the SVM algorithm for classifying feature maps. The third proposed system uses artificial neural networks (ANNs) based on the features of the GoogLeNet, ResNet-50 and AlexNet models, whose dimensions are reduced by a principal component analysis (PCA) algorithm, and then the low-dimensional features are combined with the features of the GLCM and LBP algorithms. All the proposed systems achieved promising results in the diagnosis of CT images for the rapid detection of intracranial hemorrhages. The ANN network based on fusion of the deep feature of AlexNet with the features of GLCM and LBP reached an accuracy of 99.3%, precision of 99.36%, sensitivity of 99.5%, specificity of 99.57% and AUC of 99.84%

    Multi-Method Diagnosis of CT Images for Rapid Detection of Intracranial Hemorrhages Based on Deep and Hybrid Learning

    Get PDF
    Intracranial hemorrhaging is considered a type of disease that affects the brain and is very dangerous, with high-mortality cases if there is no rapid diagnosis and prompt treatment. CT images are one of the most important methods of diagnosing intracranial hemorrhages. CT images contain huge amounts of information, requiring a lot of experience and taking a long time for proper analysis and diagnosis. Thus, artificial intelligence techniques provide an automatic mechanism for evaluating CT images to make a diagnosis with high accuracy and help radiologists make their diagnostic decisions. In this study, CT images for rapid detection of intracranial hemorrhages are diagnosed by three proposed systems with various methodologies and materials, where each system contains more than one network. The first system is proposed by three pretrained deep learning models, which are GoogLeNet, ResNet-50 and AlexNet. The second proposed system using a hybrid technology consists of two parts: the first part is the GoogLeNet, ResNet-50 and AlexNet models for extracting feature maps, while the second part is the SVM algorithm for classifying feature maps. The third proposed system uses artificial neural networks (ANNs) based on the features of the GoogLeNet, ResNet-50 and AlexNet models, whose dimensions are reduced by a principal component analysis (PCA) algorithm, and then the low-dimensional features are combined with the features of the GLCM and LBP algorithms. All the proposed systems achieved promising results in the diagnosis of CT images for the rapid detection of intracranial hemorrhages. The ANN network based on fusion of the deep feature of AlexNet with the features of GLCM and LBP reached an accuracy of 99.3%, precision of 99.36%, sensitivity of 99.5%, specificity of 99.57% and AUC of 99.84

    A novel inertia moment estimation algorithm collaborated with active force control scheme for wheeled mobile robot control in constrained environments

    Get PDF
    This paper presents a novel inertia moment estimation algorithm to enable the Active Force Control Scheme for tracking a wheeled mobile robot (WMR) effectively in a specific trajectory within constrained environments such as on roads or in factories. This algorithm, also known as laser simulator logic, has the capability to estimate the inertia moment of the AFC-controller when the robot is moving in a pre-planned path with the presence of noisy measurements. The estimation is accomplished by calculating the membership function based on the experts’ views in any form (symmetric or non-symmetric) with lowly or highly overlapped linguistic variables. A new Proportional-Derivative Active Force Controller (PD-AFC-LS-QC), employing the use of laser simulator logic and quick compensation loop, has been developed in this paper to robustly reject the noise and disturbances. This controller has three feedback control loops, namely, internal, external and quick compensation loops to compensate effectively the disturbances in the constrained environments. A simulation and experimental studies on WMR path control in two kinds of environments; namely, zigzag and highly curved terrains, were conducted to verify the proposed algorithm and controller which was then compared with other existed control schemes. The results of the simulation and experimental works show the capability of the proposed algorithms and the controller to robustly move the WMR in the constrained environments
    corecore