83 research outputs found

    Synthesis of N'-Substituted-2-(5-(4-Chlorophenyl)-1,3,4- oxadiazol-2-ylthio)acetohydrazide Derivatives as Suitable Antibacterial Agents

    Get PDF
    Purpose: To evaluate antibacterial activity of a series of molecules bearing 1,3,4-oxadiazole and azomethine moieties.Methods: The 4-chlorobenzoic acid (1) was precursor to N'-substituted-2-(5-(4-chlorophenyl)-1,3,4- oxadiazol-2-ylthio)acetohydrazide, 8a-p, through a multistep synthesis of corresponding ester, 2, hydrazide, 3 and 1,3,4-oxadiazole, 4. The molecule, 4, was subjected to electrophilic substitution by ethyl-2-bromoacetate to yield 5 which was stepped to 2-(5-(4-chlorophenyl)-1,3,4-oxadiazol-2- ylthio)acetohydrazide (6). The target molecules, 8a-p, were synthesized by nucleophilic addition of 6 to arylaldehydes, 7a-p. The proposed structures of all the synthesized molecules were elucidated by Infra Red (IR), Proton Nuclear Magnetic Resonance (1H-NMR) and Electron Impact Mass Spectrometry (EIMS) spectral data. Antibacterial activity was evaluated by the principle that microbial growth is in a log phase of growth and so results in increased absorbance of broth medium which is observed.Results: The molecule, 8b, was active against S. aureus and 8c against S. typhi only. The molecule, 8p, was the most active against S. typhi with minimum inhibitory concentration (MIC) value of 10.04 ± 1.25 μM while 8e was active against E. coli with MIC of 9.45 ± 1.00 μM, both relative to the reference standard, ciprofloxacin, which displayed MIC of 9.13 ± 2.00 and 8.90 ± 1.65 μM, respectively.Conclusion: Most of the synthesized molecules exhibit 50 % antibacterial activity relative to the reference. Molecules 8b and 8c are the least active compounds.Keywords: 1,3,4-Oxadiazole, 4-Chlorobenzoic acid, Antibacterial activity, Azomethin

    Posterior dislocation of the elbow as an unusual presentation after a total hip replacement: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Posterior dislocation of the elbow is usually associated with trauma to the joint with a reported incidence of 3%to 6%. Chronic instability is usually symptomatic following the initial injury.</p> <p>Case presentation</p> <p>We report a case of posterior dislocation of the elbow occurring in a patient while using her arm to lift herself using a monkey pole on the second day following a total hip replacement. The dislocation was reduced under sedation in the ward. There were no signs or symptoms suggesting any joint hypermobility syndrome in the patient. Follow up 4 months following the injury revealed a complete recovery in the range of motion and a pain free elbow. There were no signs and symptoms of any instability.</p> <p>Conclusion</p> <p>This is the first time such a case is reported in the literature. It certainly demonstrates that even in the absence of instability a patient can be predisposed to low energy dislocation of the elbow.</p

    Coevolved mutations reveal distinct architectures for two core proteins in the bacterial flagellar motor

    Get PDF
    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.JK was supported by Medical Research Council grant U117581331. SK was supported by seed funds from Lahore University of Managment Sciences (LUMS) and the Molecular Biology Consortium

    Vaccination with a non-human random sequence amyloid oligomer mimic results in improved cognitive function and reduced plaque deposition and micro hemorrhage in Tg2576 mice

    Get PDF
    BACKGROUND: It is well established that vaccination of humans and transgenic animals against fibrillar Aβ prevents amyloid accumulation in plaques and preserves cognitive function in transgenic mouse models. However, autoimmune side effects have halted the development of vaccines based on full length human Aβ. Further development of an effective vaccine depends on overcoming these side effects while maintaining an effective immune response. RESULTS: We have previously reported that the immune response to amyloid oligomers is largely directed against generic epitopes that are common to amyloid oligomers of many different proteins and independent of a specific amino acid sequence. Here we have examined whether we can exploit this generic immune response to develop a vaccine that targets amyloid oligomers using a non-human random sequence amyloid oligomer. In order to study the effect of vaccination against generic oligomer epitopes, a random sequence oligomer (3A) was selected as it forms oligomers that react with the oligomer specific A11 antibody. Oligomer mimics from 3A peptide, Aβ, islet amyloid polypeptide (IAPP), and Aβ fibrils were used to vaccinate Tg2576 mice, which develop a progressive accumulation of plaques and cognitive impairment. Vaccination with the 3A random sequence antigen was just as effective as vaccination with the other antigens in improving cognitive function and reducing total plaque load (Aβ burden) in the Tg2576 mouse brains, but was associated with a much lower incidence of micro hemorrhage than Aβ antigens. CONCLUSION: These results shows that the amyloid Aβ sequence is not necessary to produce a protective immune response that specifically targets generic amyloid oligomers. Using a non-human, random sequence antigen may facilitate the development of a vaccine that avoids autoimmune side effects

    Treatment of femoral shaft fractures in children by early spica casting

    No full text
    Eighty-five children with femoral shaft fractures were studied prospectively to determine the benefi·ts of early application of a single-hip spica cast. They were compared with 85 children with similar fractures treated by skin traction for 4 weeks followed by a spica cast for 2 weeks. The study revealed that femoral shaft fractures in children can be treated in a single-hip spica cast with results comparable to those achieved by traction. The additional advantages were substantial savings in cost, early reunion of child with parents and increased availability of beds.S Afr Med J 1989; 76: 96-9

    Tubercular Dactylitis:

    No full text
    • …
    corecore