11,779 research outputs found
Supercritical Water Gasification: Practical Design Strategies and Operational Challenges for Lab-Scale, Continuous Flow Reactors
Optimizing an industrial-scale supercritical water gasification process
requires detailed knowledge of chemical reaction pathways, rates, and product
yields. Laboratory-scale reactors are employed to develop this knowledge base.
The rationale behind designs and component selection of continuous flow,
laboratory-scale supercritical water gasification reactors is analyzed. Some
design challenges have standard solutions, such as pressurization and
preheating, but issues with solid precipitation and feedstock pretreatment
still present open questions. Strategies for reactant mixing must be evaluated
on a system-by-system basis, depending on feedstock and experimental goals, as
mixing can affect product yields, char formation, and reaction pathways.
In-situ Raman spectroscopic monitoring of reaction chemistry promises to
further fundamental knowledge of gasification and decrease experimentation
time. High-temperature, high-pressure spectroscopy in supercritical water
conditions is performed, however, long-term operation flow cell operation is
challenging. Comparison of Raman spectra for decomposition of formic acid in
the supercritical region and cold section of the reactor demonstrates the
difficulty in performing quantitative spectroscopy in the hot zone. Future
designs and optimization of SCWG reactors should consider well-established
solutions for pressurization, heating, and process monitoring, and effective
strategies for mixing and solids handling for long-term reactor operation and
data collection
Properties of the mechanosensitive channel MscS pore revealed by tryptophan scanning mutagenesis
Funding This work was supported by a Wellcome Trust Programme grant [092552/A/10/Z awarded to I.R.B., S.M., J. H. Naismith (University of St Andrews, St Andrews, U.K.), and S. J. Conway (University of Oxford, Oxford, U.K.)] (T.R. and M.D.E.), by a BBSRC grant (A.R.) [BB/H017917/1 awarded to I.R.B., J. H. Naismith, and O. Schiemann (University of St Andrews)], by a Leverhulme Emeritus Fellowship (EM-2012-060\2), and by a CEMI grant to I.R.B. from the California Institute of Technology. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013 FP7/2007-2011) under Grant PITN-GA-2011-289384 (FP7-PEOPLE-2011-ITN NICHE) (H.G.) (awarded to S.M.).Peer reviewedPublisher PD
Hanle effect in coherent backscattering
We study the shape of the coherent backscattering (CBS) cone obtained when
resonant light illuminates a thick cloud of laser-cooled rubidium atoms in
presence of a homogenous magnetic field. We observe new magnetic
field-dependent anisotropies in the CBS signal. We show that the observed
behavior is due to the modification of the atomic radiation pattern by the
magnetic field (Hanle effect in the excited state).Comment: 4 pages, 3 figure
Global bifurcation of homoclinic trajectories of discrete dynamical systems
We prove the existence of an unbounded connected branch of nontrivial
homoclinic trajectories of a family of discrete nonautonomous asymptotically
hyperbolic systems parametrized by a circle under assumptions involving the
topological properties of the asymptotic stable bundles.Comment: 28 pages. arXiv admin note: text overlap with arXiv:1111.140
Topology and Homoclinic Trajectories of Discrete Dynamical Systems
We show that nontrivial homoclinic trajectories of a family of discrete,
nonautonomous, asymptotically hyperbolic systems parametrized by a circle
bifurcate from a stationary solution if the asymptotic stable bundles
Es(+{\infty}) and Es(-{\infty}) of the linearization at the stationary branch
are twisted in different ways.Comment: 19 pages, canceled the appendix (Properties of the index bundle) in
order to avoid any text overlap with arXiv:1005.207
Risk map as a library management information dashboard: a case study in adapting a configural display
In this paper, we report on our application of Cognitive Work Analysis to create an Abstraction Hierarchy model that helps librarians identify key functional relationships for managing the overall performance of a library. By themselves, functional relationships are not as useful in providing insights into the reasons for good or poor performance. However, when these functional relationships are set against the context of system invariants and constraints, they can provide library managers information useful for diagnosis and localization of problems. We propose the Risk Map visualization technique as an information dashboard to cognitively access these functional relationships. Furthermore, when these functional relationships are portrayed over time, trends and patterns can be detected with relative ease
- …