12,523 research outputs found

    Transfer of BECs through discrete breathers in an optical lattice

    Full text link
    We study the stability of a stationary discrete breather (DB) on a nonlinear trimer in the framework of the discrete nonlinear Schr\"odinger equation (DNLS). In previous theoretical investigations of the dynamics of Bose-Einstein condensates in leaking optical lattices, collisions between a DB and a lattice excitation, e.g. a moving breather (MB) or phonon, were studied. These collisions lead to the transmission of a fraction of the incident (atomic) norm of the MB through the DB, while the DB can be shifted in the direction of the incident lattice excitation. Here we show that there exists a total energy threshold of the trimer, above which the lattice excitation can trigger the destabilization of the DB and that this is the mechanism leading to the movement of the DB. Furthermore, we give an analytic estimate of upper bound to the norm that is transmitted through the DB. Our analysis explains the results of the earlier numerical studies and may help to clarify functional operations with BECs in optical lattices such as blocking and filtering coherent (atomic) beams.Comment: 8 pages, 5 figure

    3D simulations of self-propelled, reconstructed jellyfish using vortex methods

    Full text link
    We present simulations of the vortex dynamics associated with the self-propelled motion of jellyfish. The geometry is obtained from image segmentation of video recordings from live jellyfish. The numerical simulations are performed using three-dimensional viscous, vortex particle methods with Brinkman penalization to impose the kinematics of the jellyfish motion. We study two types of strokes recorded in the experiment1. The first type (stroke A) produces two vortex rings during the stroke: one outside the bell during the power stroke and one inside the bell during the recovery stroke. The second type (stroke B) produces three vortex rings: one ring during the power stroke and two vortex rings during the recovery stroke. Both strokes propel the jellyfish, with stroke B producing the highest velocity. The speed of the jellyfish scales with the square root of the Reynolds number. The simulations are visualized in a fluid dynamics video.Comment: 1 page, 1 figur

    Parallel Batch-Dynamic Graph Connectivity

    Full text link
    In this paper, we study batch parallel algorithms for the dynamic connectivity problem, a fundamental problem that has received considerable attention in the sequential setting. The most well known sequential algorithm for dynamic connectivity is the elegant level-set algorithm of Holm, de Lichtenberg and Thorup (HDT), which achieves O(log2n)O(\log^2 n) amortized time per edge insertion or deletion, and O(logn/loglogn)O(\log n / \log\log n) time per query. We design a parallel batch-dynamic connectivity algorithm that is work-efficient with respect to the HDT algorithm for small batch sizes, and is asymptotically faster when the average batch size is sufficiently large. Given a sequence of batched updates, where Δ\Delta is the average batch size of all deletions, our algorithm achieves O(lognlog(1+n/Δ))O(\log n \log(1 + n / \Delta)) expected amortized work per edge insertion and deletion and O(log3n)O(\log^3 n) depth w.h.p. Our algorithm answers a batch of kk connectivity queries in O(klog(1+n/k))O(k \log(1 + n/k)) expected work and O(logn)O(\log n) depth w.h.p. To the best of our knowledge, our algorithm is the first parallel batch-dynamic algorithm for connectivity.Comment: This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 201

    Deep far infrared ISOPHOT survey in "Selected Area 57", I. Observations and source counts

    Get PDF
    We present here the results of a deep survey in a 0.4 sq.deg. blank field in Selected Area 57 conducted with the ISOPHOT instrument aboard ESAs Infrared Space Observatory (ISO) at both 60 um and 90 um. The resulting sky maps have a spatial resolution of 15 x 23 sq.arcsec. per pixel which is much higher than the 90 x 90 sq.arcsec. pixels of the IRAS All Sky Survey. We describe the main instrumental effects encountered in our data, outline our data reduction and analysis scheme and present astrometry and photometry of the detected point sources. With a formal signal to noise ratio of 6.75 we have source detection limits of 90 mJy at 60 um and 50 mJy at 90 um. To these limits we find cumulated number densities of 5+-3.5 per sq.deg. at 60 um and 14.8+-5.0 per sq.deg.at 90 um. These number densities of sources are found to be lower than previously reported results from ISO but the data do not allow us to discriminate between no-evolution scenarios and various evolutionary models.Comment: 15 pages, 11 figures, accepted by Astronomy & Astrophysic

    Common cause analysis : a review and extension of existing methods

    Get PDF
    The quantitative common cause analysis code, MOBB, is extended to include uncertainties arising from modelling uncertainties and data uncertainties. Two methods, Monte Carlo simulation and the Method-of-Moments are used to propagate uncertainties through the analysis. The two different capabilities of the code are then compared. When component failure rates are assumed lognormallv distributed, bounded lognormal (Sb) distributions are used to evaluate higher moment terms, as required by the Method-of-Moments, in order to minimize the effect of the tail of the lognormal. A code using the discrete probability distribution (DPD) method is developed for analyzing system unavailability due to common initiating events (internal and external). Sample problems demonstrating each approach are also presented

    Neonatal White Matter Maturation Is Associated With Infant Language Development

    Get PDF
    Background: While neonates have no sophisticated language skills, the neural basis for acquiring this function is assumed to already be present at birth. Receptive language is measurable by 6 months of age and meaningful speech production by 10-18 months of age. Fiber tracts supporting language processing include the corpus callosum (CC), which plays a key role in the hemispheric lateralization of language; the left arcuate fasciculus (AF), which is associated with syntactic processing; and the right AF, which plays a role in prosody and semantics. We examined if neonatal maturation of these fiber tracts is associated with receptive language development at 12 months of age. Methods: Diffusion-weighted imaging (DWI) was performed in 86 infants at 26.6 ± 12.2 days post-birth. Receptive language was assessed via the MacArthur-Bates Communicative Development Inventory at 12 months of age. Tract-based fractional anisotropy (FA) was determined using the NA-MIC atlas-based fiber analysis toolkit. Associations between neonatal regional FA, adjusted for gestational age at birth and age at scan, and language development at 12 months of age were tested using ANOVA models. Results: After multiple comparisons correction, higher neonatal FA was positively associated with receptive language at 12 months of age within the genu (p < 0.001), rostrum (p < 0.001), and tapetum (p < 0.001) of the CC and the left fronto-parietal AF (p = 0.008). No significant clusters were found in the right AF. Conclusion: Microstructural development of the CC and the AF in the newborn is associated with receptive language at 12 months of age, demonstrating that interindividual variation in white matter microstructure is relevant for later language development, and indicating that the neural foundation for language processing is laid well ahead of the majority of language acquisition. This suggests that some origins of impaired language development may lie in the intrauterine and potentially neonatal period of life. Understanding how interindividual differences in neonatal brain maturity relate to the acquisition of function, particularly during early development when the brain is in an unparalleled window of plasticity, is key to identifying opportunities for harnessing neuroplasticity in health and disease

    Singlet-Triplet Physics and Shell Filling in Carbon Nanotube Double Quantum Dots

    Full text link
    An artifcial two-atomic molecule, also called a double quantum dot (DQD), is an ideal system for exploring few electron physics. Spin-entanglement between just two electrons can be explored in such systems where singlet and triplet states are accessible. These two spin-states can be regarded as the two states in a quantum two-state system, a so-called singlet-triplet qubit. A very attractive material for realizing spin based qubits is the carbon nanotube (CNT), because it is expected to have a very long spin coherence time. Here we show the existence of a gate-tunable singlet-triplet qubit in a CNT DQD. We show that the CNT DQD has clear shell structures of both four and eight electrons, with the singlet-triplet qubit present in the four-electron shells. We furthermore observe inelastic cotunneling via the singlet and triplet states, which we use to probe the splitting between singlet and triplet, in good agreement with theory.Comment: Supplement available at: http://www.fys.ku.dk/~hij/public/singlet-triple_supp.pd

    W-Extended Fusion Algebra of Critical Percolation

    Full text link
    Two-dimensional critical percolation is the member LM(2,3) of the infinite series of Yang-Baxter integrable logarithmic minimal models LM(p,p'). We consider the continuum scaling limit of this lattice model as a `rational' logarithmic conformal field theory with extended W=W_{2,3} symmetry and use a lattice approach on a strip to study the fundamental fusion rules in this extended picture. We find that the representation content of the ensuing closed fusion algebra contains 26 W-indecomposable representations with 8 rank-1 representations, 14 rank-2 representations and 4 rank-3 representations. We identify these representations with suitable limits of Yang-Baxter integrable boundary conditions on the lattice and obtain their associated W-extended characters. The latter decompose as finite non-negative sums of W-irreducible characters of which 13 are required. Implementation of fusion on the lattice allows us to read off the fusion rules governing the fusion algebra of the 26 representations and to construct an explicit Cayley table. The closure of these representations among themselves under fusion is remarkable confirmation of the proposed extended symmetry.Comment: 30 page
    corecore