8 research outputs found

    Comparing DADA2 and OTU clustering approaches in studying the bacterial communities of atopic dermatitis

    Get PDF
    Introduction. The pathogenesis of atopic dermatitis (AD) is not yet fully understood, but the bacterial composition of AD patients’ skin has been shown to have an increased abundance of Staphylococcus aureus. More recently, coagulase-negative Staphylococcus (CoNS) species were shown to be able to inhibit S. aureus, but further studies are required to determine the effects of Staphylococcus community variation in AD. Aim. Here we investigated whether analysing metabarcoding data with the more recently developed DADA2 approach improves metabarcoding analyses compared to the previously used operational taxonomic unit (OTU) clustering, and can be used to study Staphylococcus community dynamics. Methods. The bacterial 16S rRNA region from tape strip samples of the stratum corneum of AD patients (non-lesional skin) and non-AD controls was metabarcoded. We processed metabarcoding data with two different bioinformatic pipelines (an OTU clustering method and DADA2), which were analysed with and without technical replication (sampling strategy). Results. We found that OTU clustering and DADA2 performed well for community-level studies, as demonstrated by the identification of significant differences in the skin bacterial communities associated with AD. However, the OTU clustering approach inflated bacterial richness, which was worsened by not having technical replication. Data processed with DADA2 likely handled sequencing errors more effectively and thereby did not inflate molecular richness. Conclusion. We believe that DADA2 represents an improvement over an OTU clustering approach, and that biological replication rather than technical replication is a more effective use of resources. However, neither OTU clustering nor DADA2 gave insights into Staphylococcus community dynamics, and caution should remain in not overinterpreting the taxonomic assignments at lower taxonomic ranks.publishedVersio

    Comparing DADA2 and OTU clustering approaches in studying the bacterial communities of atopic dermatitis

    No full text
    Introduction. The pathogenesis of atopic dermatitis (AD) is not yet fully understood, but the bacterial composition of AD patients’ skin has been shown to have an increased abundance of Staphylococcus aureus. More recently, coagulase-negative Staphylococcus (CoNS) species were shown to be able to inhibit S. aureus, but further studies are required to determine the effects of Staphylococcus community variation in AD. Aim. Here we investigated whether analysing metabarcoding data with the more recently developed DADA2 approach improves metabarcoding analyses compared to the previously used operational taxonomic unit (OTU) clustering, and can be used to study Staphylococcus community dynamics. Methods. The bacterial 16S rRNA region from tape strip samples of the stratum corneum of AD patients (non-lesional skin) and non-AD controls was metabarcoded. We processed metabarcoding data with two different bioinformatic pipelines (an OTU clustering method and DADA2), which were analysed with and without technical replication (sampling strategy). Results. We found that OTU clustering and DADA2 performed well for community-level studies, as demonstrated by the identification of significant differences in the skin bacterial communities associated with AD. However, the OTU clustering approach inflated bacterial richness, which was worsened by not having technical replication. Data processed with DADA2 likely handled sequencing errors more effectively and thereby did not inflate molecular richness. Conclusion. We believe that DADA2 represents an improvement over an OTU clustering approach, and that biological replication rather than technical replication is a more effective use of resources. However, neither OTU clustering nor DADA2 gave insights into Staphylococcus community dynamics, and caution should remain in not overinterpreting the taxonomic assignments at lower taxonomic ranks

    Temporal and Spatial Variation of the Skin-Associated Bacteria from Healthy Participants and Atopic Dermatitis Patients

    No full text
    Several factors have been shown to influence the composition of the bacterial communities inhabiting healthy skin, with variation between different individuals, differing skin depths, and body locations (spatial-temporal variation). Atopic dermatitis (AD) is a chronic skin disease also affecting the skin-associated bacterial communities. While the effects of AD have been studied on these processes individually, few have considered how AD disrupts the spatial-temporal variation of the skin bacteria as a whole (i.e., considered these processes simultaneously). Here, we characterized the skin-associated bacterial communities of healthy volunteers and lesional and nonlesional skin of AD patients by metabarcoding the universal V3-V4 16S rRNA region from tape strip skin samples. We quantified the spatial-temporal variation (interindividual variation, differing skin depths, multiple time points) of the skin-associated bacteria within healthy controls and AD patients, including the relative change induced by AD in each. Interindividual variation correlated with the bacterial community far more strongly than any other factors followed by skin depth and then AD status. There was no significant temporal variation found within either AD patients or healthy controls. The bacterial community was found to vary markedly according to AD severity, and between patients without and with filaggrin mutations. Therefore, future studies may benefit from sampling subsurface epidermal communities and considering AD severity and the host genome in understanding the role of the skin bacterial community within AD pathogenesis rather than considering AD as a presence-absence disorder. IMPORTANCE The bacteria associated with human skin may influence skin barrier function and the immune response. Previous studies have attempted to understand the factors that regulate the skin bacteria, characterizing the spatial-temporal variation of the skin bacteria within unaffected skin. Here, we quantified the effect of AD on the skin bacteria on multiple spatial-temporal factors simultaneously. Although significant community variation between healthy controls and AD patients was observed, the effects of AD on the overall bacterial community were relatively low compared to other measured factors. Results here suggest that changes in specific taxa rather than wholesale changes in the skin bacteria are associated with mild to moderate AD. Further studies would benefit from incorporating the complexity of AD into models to better understand the condition, including AD severity and the host genome, alongside microbial composition

    A Comparative Study on the Faecal Bacterial Community and Potential Zoonotic Bacteria of Muskoxen (Ovibos moschatus) in Northeast Greenland, Northwest Greenland and Norway

    Get PDF
    Muskoxen (Ovibos moschatus) are ruminants adapted to a high-fibre diet. There is increasing interest in the role that gut microbes play in the digestion and utilization of these specialized diets but only limited data available on the gut microbiome of high-Arctic animals. In this study, we metabarcoded the 16S rRNA region of faecal samples from muskoxen of Northeast Greenland, Northwest Greenland and Norway, and quantified the effects of physiological and temporal factors on bacterial composition. We found significant effects of body mass, year of sampling and location on the gut bacterial communities of North East Greenland muskoxen. These effects were however dwarfed by the effects of location, emphasizing the importance of the local ecology on the gut bacterial community. Habitat alterations and rising temperatures may therefore have a considerable impact on muskoxen health and reproductive success. Moreover, muskoxen are hunted and consumed in Greenland, Canada and Alaska; therefore, this study also screened for potential zoonoses of food safety interest. A total of 13 potentially zoonotic genera were identified, including the genera Erysipelothrix and Yersinia implicated in recent mass die-offs of the muskoxen themselves

    Universal Dermal Microbiome in Human Skin

    Get PDF
    ABSTRACT Human skin microbiota has been described as a “microbial fingerprint” due to observed differences between individuals. Current understanding of the cutaneous microbiota is based on sampling the outermost layers of the epidermis, while the microbiota in the remaining skin layers has not yet been fully characterized. Environmental conditions can vary drastically between the cutaneous compartments and give rise to unique communities. We demonstrate that the dermal microbiota is surprisingly similar among individuals and contains a specific subset of the epidermal microbiota. Variability in bacterial community composition decreased significantly from the epidermal to the dermal compartment but was similar among anatomic locations (hip and knee). The composition of the epidermal microbiota was more strongly affected by environmental factors than that of the dermal community. These results indicate a well-conserved dermal community that is functionally distinct from the epidermal community, challenging the current dogma. Future studies in cutaneous disorders and chronic infections may benefit by focusing on the dermal microbiota as a persistent microbial community. IMPORTANCE Human skin microbiota is thought to be unique according to the individual's lifestyle and genetic predisposition. This is true for the epidermal microbiota, while our findings demonstrate that the dermal microbiota is universal between healthy individuals. The preserved dermal microbial community is compositionally unique and functionally distinct to the specific environment in the depth of human skin. It is expected to have direct contact with the immune response of the human host, and research in the communication between host and microbiota should be targeted to this cutaneous compartment. This novel insight into specific microbial adaptation can be used advantageously in the research of chronic disorders and infections of the skin. It can enlighten the alteration between health and disease to the benefit of patients suffering from long-lasting socioeconomic illnesses

    A simplified bacterial community found within the epidermis than at the epidermal surface of atopic dermatitis patients and healthy controls

    No full text
    Abstract There has been considerable research into the understanding of the healthy skin microbiome. Similarly, there is also a considerable body of research into whether specific microbes contribute to skin disorders, with atopic dermatitis (AD) routinely linked to increased Staphylococcus aureus (S. aureus) colonisation. In this study, the epidermal surface of participants was sampled using swabs, while serial tape-stripping (35 tapes) was performed to sample through the stratum corneum. Samples were taken from AD patients and healthy controls, and the bacterial communities were profiled by metabarcoding the universal V3-V4 16S rRNA region. Results show that the majority of bacterial richness is located within the outermost layers of the stratum corneum, however there were many taxa that were found almost exclusively at the very outermost layer of the epidermis. We therefore hypothesise that tape-stripping can be performed to investigate the ‘core microbiome’ of participants by removing environmental contaminants. Interestingly, significant community variation between AD patients and healthy controls was only observable at the epidermal surface, yet a number of individual taxa were found to consistently differ with AD status across the entire epidermis (i.e. both the epidermal surface and within the epidermis). Sampling strategy could therefore be tailored dependent on the hypothesis, with sampling for forensic applications best performed using surface swabs and outer tapes, while profiling sub-surface communities may better reflect host genome and immunological status

    IASIL Bibliography 2013

    No full text
    corecore