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ABSTRACT Human skin microbiota has been described as a “microbial fingerprint”
due to observed differences between individuals. Current understanding of the cuta-
neous microbiota is based on sampling the outermost layers of the epidermis, while
the microbiota in the remaining skin layers has not yet been fully characterized. En-
vironmental conditions can vary drastically between the cutaneous compartments
and give rise to unique communities. We demonstrate that the dermal microbiota is
surprisingly similar among individuals and contains a specific subset of the epider-
mal microbiota. Variability in bacterial community composition decreased signifi-
cantly from the epidermal to the dermal compartment but was similar among ana-
tomic locations (hip and knee). The composition of the epidermal microbiota was
more strongly affected by environmental factors than that of the dermal community.
These results indicate a well-conserved dermal community that is functionally dis-
tinct from the epidermal community, challenging the current dogma. Future studies
in cutaneous disorders and chronic infections may benefit by focusing on the der-
mal microbiota as a persistent microbial community.

IMPORTANCE Human skin microbiota is thought to be unique according to the in-
dividual’s lifestyle and genetic predisposition. This is true for the epidermal microbi-
ota, while our findings demonstrate that the dermal microbiota is universal between
healthy individuals. The preserved dermal microbial community is compositionally
unique and functionally distinct to the specific environment in the depth of human
skin. It is expected to have direct contact with the immune response of the human
host, and research in the communication between host and microbiota should be
targeted to this cutaneous compartment. This novel insight into specific microbial
adaptation can be used advantageously in the research of chronic disorders and in-
fections of the skin. It can enlighten the alteration between health and disease to
the benefit of patients suffering from long-lasting socioeconomic illnesses.

KEYWORDS 16S rRNA genes, cutaneous compartments, DNA sequencing, dermal
microbiota, dry habitat, skin biopsies, skin microbiome

Human skin contains highly individual epidermal microbiota (1–7), which is a diverse
and complex community (3). This community exhibits temporal changes (4),

adapts to its surroundings (1), and is shaped by chemical, biological, and physical
conditions on the skin (1, 8, 9). Community composition varies systematically among
different skin habitats, such as between dry, moist, and sebaceous skin (1, 3, 4, 9, 10).
This may partially be driven by the density of glands and hair follicles (11–13). Large
bacterial aggregates have recently been observed deep within hair follicles (14), but
these communities can be sampled only by skin biopsies. Most studies examining
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human skin microbiota utilize cotton swabs (1, 3–5, 8, 10, 15) and, therefore, collect
only the epidermal microbiota (9). Few investigations have examined the distribution
of the microbiota in full-thickness skin biopsy specimens (9) or within subepidermal
compartments (2) A complete characterization of the composition and distribution of
the entire skin microbiota (1) within various cutaneous compartments and structures is
essential in order to understand the role of microorganisms within the human skin. This
study investigates the effect of skin depth and anatomic location on bacterial compo-
sition in healthy skin microbiota. Full-thickness skin biopsy specimens were collected at
two different anatomic locations with a sample size exceeding that of previous human
studies (1–4, 9, 16). The biopsy specimens were separated along the boundary of the
epidermis and dermis. High-throughput sequencing (HTS) of the 16S rRNA bacterial
region was performed to comprehensively analyze the microbial communities, ex-
tracted directly from their natural environment.

RESULTS
Microbial composition and richness. Skin compartment (dermal and epidermal)

significantly affected the composition of operational taxonomic units (OTU) (P � 0.001,
df � 1) and OTU richness (P � 2e�16, df � 4) but was not affected by anatomic
location (hip and knee) (P � nonsignificant [ns]) (Fig. 1a). This skin depth effect was
evident in the nonmetric multidimensional scaling (nMDS) plot, where dermal and
epidermal samples grouped separately and the majority of samples clustered within
the 95% confidence intervals (Fig. 1b).

FIG 1 Bacterial composition in box plot and NMDS plot. (a) OTU richness by anatomic location (hip versus knee) and skin compartment (epidermal versus
dermal). There were no differences in OTU richness between hip and knee. OTU richness increased from the dermal to the epidermal compartment. (b) An NMDS
plot of bacterial 16S composition with clear grouping by skin location. Skin compartment and anatomic location are represented by point color and shape,
respectively, while dotted lines represent a 95% reference interval for the skin compartment.
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Similarities within compartments. Given the divergent bacterial communities
between the epidermal and dermal compartments, these communities were separated
before their community variation and regulation were analyzed independently. Median
similarity between samples was calculated using Jaccard similarity matrices, being
0.256 and 0.286 in the epidermal and dermal compartments, respectively (see Fig. S2
in the supplemental material), with the dermal community being significantly more
similar and conserved (W [Wilcoxon rank sum] � 5,328,400, P � 0.001) than the more
variable epidermal community.

Correlation to metavariables. Three individual analyses, envfit, mixed linear mod-
eling, and multivariate general linear modeling, tested variations in the epidermal and
dermal communities against metadata variables (age, sex, smoking, diabetic status, and
interpersonal variation). Mixed linear modeling was performed to test the metadata
variables that drive variation of bacterial richness in the epidermal compartment,
finding that both age (P � 0.001) and diabetic status (P � 0.007) had significant effects
(Table S1). Meanwhile, envfit and multivariate general linear modeling were per-
formed to test whether metadata parameters drive variation in the epidermal
compartment bacterial composition, with both showing that age (P � 0.002 and
0.006, respectively), smoking habits (P � 0.011 and 0.020, respectively), and inter-
personal variation (P � 0.001 and 0.002, respectively) drive epidermal compartment
variation, while multivariate general linear modeling also found compositional variation
associated with anatomic location (P � 0.046) and sex (P � 0.020). Controversially, no
metadata parameters were shown to affect bacterial richness in the dermal compart-
ment when mixed linear modeling was used, while the dermal compartment’s bacterial
composition was shown to vary with only age (P � 0.010) and interpersonal variation
(P � 0.004) when multivariate general linear modeling (Table S1) was used and with no
parameters when envfit was used.

Taxonomy in dermal and epidermal compartments. The taxonomy of dermal and
epidermal compartments is illustrated by a heat tree (Fig. 2). Nodes represent taxo-
nomic levels, and each branch represents the relationship between those entities. OTU
richness is represented by node size, color, and color intensity, where blue branches are
more present in the epidermal compartment and yellow branches are more repre-
sented in the dermal compartment. Gray branches appear equally in both compart-
ments. This heat tree emphasizes that the differences across skin layers are driven by
increased bacterial diversity in the epidermal compartment.

Other than the phylum Proteobacteria, which showed a significantly higher
(P � 0.001) estimated mean relative abundance (%) and an similar estimated mean log
OTU richness, the top four most persistent phyla were all significantly less rich
(P � 0.001), with significantly lower mean relative abundances (P � 0.001) in the dermal
compartment than in the epidermal compartment (Fig. S5a).

The estimated mean log OTU richness of the top five most persistent genera was
similar between compartments, except that for Corynebacterium spp., which was
significantly higher (P � 0.001) in the epidermal compartment. Correspondingly, the
estimated mean relative abundance (%) of Corynebacterium spp. was significantly
higher (P � 0.001) in the epidermal compartment, while that of Pelomonas spp. was
significantly higher (P � 0.001) in the dermal compartment. The remaining most per-
sistent genera were similar in relative abundance between compartments (Fig. S5b).

Indicator species analysis. OTUs that significantly differed in persistence between
the two cutaneous compartments (Sidak’s alpha � 0.05) were identified using indicator
species analysis and plotted in a persistence plot (Fig. 3). Seventy-five OTUs differed
significantly, and these were grouped into aerobic or anaerobic species (based on
published literature) that were significantly persistent in epidermal and dermal com-
partments. All OTUs were more persistent in the epidermal compartment with the
exception of a single Pelomonas saccharophila OTU.

Prediction of genes and pathways. A principal-component analysis (PCA) plot of
the predicted genes demonstrates separate groupings of samples from the dermal and

Universal Dermal Microbiome ®

January/February 2020 Volume 11 Issue 1 e02945-19 mbio.asm.org 3

 on F
ebruary 28, 2020 at C

openhagen U
niversity Library

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://mbio.asm.org
http://mbio.asm.org/


epidermal compartments (Fig. S6) based on predicted gene ortholog abundances.
There was a significant difference (P � 1e�5) in relative gene abundance between
compartments, suggesting a difference in overall functionality of the microbial com-
munities. A heat map (Fig. 4a) and a simplified ridge plot (Fig. 4b) describing the 25
most significantly different pathways between compartments clearly illustrate the
variability in functionality throughout the stratified tissues. See the supplemental
material for a more detailed heat map of all significantly different pathways between
compartments (Fig. S7).

DISCUSSION

Different anatomic locations were expected to have different compositions and
richness (4), but we demonstrated that neither bacterial community composition nor
overall bacterial richness (as operational taxonomic units [OTU]) differed between the
anatomic locations (Fig. 1a). This challenges previous findings, in which the cutaneous
community composition differed greatly between skin locations, even within habitats
(4). While local conditions, such as density of glands or hair follicles, as well as chemical
factors, such as pH, moisture, and temperature, all influence bacterial composition (1,
4, 12, 15), the hip and knee are both dry skin habitats with similar topographical
conditions, which may explain why no significant differences were observed. Addition-

FIG 2 Heat tree illustrating the overall taxonomy of the bacterial community across the dermal compartment relative to that of the epidermal compartment
(see the supplemental information). Color changes represent the difference in log2 ratio of median proportions of reads between epidermal and dermal
compartments. The blue nodes are more enriched in the epidermal compartment, while yellow nodes are more enriched in the dermal compartment. The gray
nodes are equally present in both compartments.
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ally, while a strong and significant patient effect was expected based on many previous
studies (1, 3–7, 17), this was limited to the epidermal communities, and no effect on the
dermal communities was detected at all (for skin compartments: see Fig. S1a and b in
the supplemental material).

Differences in skin compartments had the largest effect on determining the overall
community composition. The dermal community consisted of a specific subset of the
epidermal community, but the stark contrast between dermal and epidermal bacterial
communities was surprising. Previous attempts to analyze divided skin biopsy speci-
mens by 16S rRNA sequencing found similar microbial profiles in both compartments
(9), whereas in our study, bacterial community composition and richness (as OTU
richness) differed significantly between the dermal and epidermal compartments
(Fig. 1). Additionally, when comparing community similarities (using Bray-Curtis simi-

FIG 3 Persistence plot. The persistence of 75 genera/species that differ significantly in persistence between the dermal and epidermal compartments. They
are grouped according to their anaerobic or aerobic preference and their presence in both the epidermal and dermal compartments or in the epidermal
compartment only. Of the genera/species significantly different in persistence between the two compartments, 61% were aerobic and 39% were anaerobic.
Among the genera/species present only in the epidermal compartment, 35% were aerobic and 65% were anaerobic.

Universal Dermal Microbiome ®

January/February 2020 Volume 11 Issue 1 e02945-19 mbio.asm.org 5

 on F
ebruary 28, 2020 at C

openhagen U
niversity Library

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://mbio.asm.org
http://mbio.asm.org/


FIG 4 Heat map and ridge plot of predicted pathways. Predicted relative abundances of the pathways that differ the
most between dermal (blue) and epidermal (black) compartments (all q values � 0.05). (a) (a) Heat map of log Z-scores

(Continued on next page)
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larity matrices), we found that the dermal compartment’s community was significantly
less variable than that of the epidermal compartment (Fig. S2). The heat tree (Fig. 2)
depicts the difference in OTU richness associated with each phylogenetic group and
illustrates that the majority of OTUs were enriched in the epidermal compartment
(blue), while relatively few groups demonstrated higher richness in the dermal com-
partment (yellow). The results here suggest that the bacterial community of the dermal
compartment is less rich across nearly all taxonomic groups.

The distributions of the four major phyla were similar to those of previous investi-
gations in human skin (1, 4, 9, 18). Other than the more abundant Pelomonas spp.
within the phylum Proteobacteria, the most persistent genera showed abundance in the
dermal community that was similar to or lower than the abundance in the epidermal
community. Proteobacteria are found to colonize deep, cutaneous compartments and
are presumably involved in regulating skin homeostasis between the host and the
environment (19). Specifically, the dermal highly abundant Pelomonas spp. are one of
the core commensals in cutaneous communities (19). Concurrently, Corynebacterium, a
genus that is predominant in moist skin habitats but also prevalent in dry skin habitats
(12), was mainly abundant and richer in the epidermal compartment than in the dermal
compartment (Fig. S5). Together, these results suggest that the dermis, with its less
complex and less variable bacterial community, is more specifically colonized (2).

To further characterize the differences between skin compartments, we analyzed
OTUs that significantly differed in persistence between dermal compartments. An OTU
may have a low abundance within the microbiome but nevertheless may be observed
in many samples, suggesting a functional role. We define persistence as the percentage
of samples in which an OTU is found (Fig. 4). A total of 75 OTUs differed significantly
in persistence between the epidermal and dermal compartments. These OTUs were
categorized as being present in both compartments or only the epidermal compart-
ment and were classified into anaerobic or aerobic bacteria based on published
literature findings. All OTUs, except Pelomonas saccharophila, were more persistent in
the epidermal compartment, while there were no clear trends in the distributions of
anaerobic and aerobic bacteria between the skin layers. Similarly, only a few individual
OTUs increased in abundance within the dermis, which included a Methylobacterium
species and a Brevundimonas species. These have been recorded as opportunistic
pathogens in immunocompromised patients or in those suffering from an underlying
disease (20, 21), and the dermis may serve as a reservoir for potential pathogens for
patients at risk of skin and soft tissue infections. This is in agreement with a growing
body of literature suggesting that a lack of regulation of the microbiome by the host
(dysbiosis) can lead to previously commensal bacterial species becoming pathogenic
(22). However, it should be noted that Methylobacterium spp. and other genera such as
Xanthomonas spp. have previously been identified as common contaminants in DNA
extraction kits (23). In our study, these genera were absent in our negative controls and
were more abundant in the dermal communities, suggesting a role in the local
microbiota rather than a systemic contamination, while other OTUs assigned to Atopo-
bium, Cellulomonas, and Conchiformibius genera were likely contaminants.

Given that the dermal and epidermal bacterial communities differed in composition
and richness, we examined the factors that regulate these differences. The effects of
age, sex, smoking status, diabetic status, anatomic location, and interpersonal variation
on the bacterial OTU richness of each skin compartment were modeled using gener-
alized linear modeling, while envfit and multivariate general linear modeling (Table S1)
were used to estimate their effects on the bacterial community composition. There was
evidence that age, smoking status, diabetic status, and interpersonal variation affected
the epidermal composition and bacterial OTU richness. There was also additional

FIG 4 Legend (Continued)
of relative abundances visualized in blue (enriched) to yellow (depleted); (b) kernel density plots of differences between
dermal and epidermal compartments from all paired samples. Trees are built with hierarchical clustering.
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support that sex and anatomic location affected composition but not OTU richness
(Table S1 and Fig. S3 and S4). The dermal microbiota was considerably less affected by
these factors, with only interpersonal variation and age affecting bacterial composition,
while no factor correlated with the dermal bacterial OTU richness. The results here
therefore suggest that the epidermal bacterial composition was more affected by
external factors, resulting in its higher variability. This is in accordance with the previous
findings of many studies, where significant interpersonal variability was observed (6, 12,
16, 24–28). This variation is likely to be driven by greater exposure of the epidermis to
the external environment. It is also quite possible that compositional differences
among individuals’ dermal bacterial communities are at least partly driven by host
genotypic variation as well as immunology (12).

The functional capabilities of the epidermal and dermal bacterial communities were
computationally annotated to predict potential gene families. A PCA plot of the
predicted genes demonstrates separate groupings of samples from the dermal and
epidermal compartments (Fig. S6) based on predicted gene ortholog abundances.
There was a significant difference (P � 1e�5) in relative gene abundances between the
two compartments, suggesting a difference in overall functionality of the microbial
communities. A heat map (Fig. 4a) and a simplified ridge plot (Fig. 4b) describing the
25 most significantly different pathways (all false discovery rates [q values] � 1e�5)
clearly illustrate the variability in functionality throughout the stratified tissue. The
difference in proportions of the pathways can lead to an inference of the functional
relevance in the epidermal and dermal communities. The enriched pathways in the
dermal community, such as nitrogen metabolism, bacterial chemotaxis, flagellar as-
sembly, and lipopolysaccharide biosynthesis, indicate a possible dormant bacterial
community that is initiating a biofilm mode of growth and survival by use of alternative
energy pathways. Concurrently, the dermal depleted pathways include DNA replica-
tion, mismatch repair, homologous recombination, and pyrimidine/purine metabolism
(Fig. 4), indicating bacteria with a decreased cell growth. These predictive, meta-
genomic analyses suggest a clear contrast in functional capability of the microbial
communities between cutaneous compartments.

Various skin compartments exhibit specific milieus (2, 12). Hair follicles contain
anoxic environments (12) that may allow anaerobic bacteria to thrive, cultivating their
own unique localized microbiota (29). They stretch from the outermost layers of the
epidermis deep into the dermis (14), contain a significant proportion of microorgan-
isms, and should be considered pathways for the microbiota of the epidermis to enter
the dermal layer of the skin and vice versa. Nevertheless, the dermal community is well
protected against topical cutaneous antimicrobials, such as preoperational preparation
antimicrobials that cannot penetrate the many cutaneous layers (30). The presence of
a sebaceous plug in the infundibulum of hair follicles may furthermore hinder the
penetration of drugs (31), and the deep regions of hair follicles thereby act as microbial
reservoirs (32). This hidden dermal microbiota can easily reestablish the core of the
epidermal microbiota or, during an operation, accidently be pushed further into the
tissue and potentially initiate an infection.

In surgical site infections and chronic wounds, Staphylococcus spp. are ubiquitous
(28, 33). Our findings of a medium abundance of Staphylococcus spp. in healthy skin
(Fig. 2; Fig. S5b) suggest that this omnipresent genus possesses the potential to grow
and outcompete other genera under favorable conditions. Coagulase-negative staph-
ylococci (28), Cutibacterium acnes (34), and Pseudomonas aeruginosa (35) are also
commonly found in surgical site infections and chronic wounds, as well as in healthy
human skin (13). These potentially pathogenic species can cause complications when
forced out of their natural habitat by surgical utensils or needles and possess the ability
to develop chronic infections in opportunistic locations. These and other opportunistic
pathogens sustain a low metabolism within the cutaneous compartments but thrive
when favorable conditions exist.

Overall, our findings suggest an advanced adaptable epidermal microbiota and a
less complex dermal core community in healthy human skin. Each of these communi-
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ties can adapt to the compartment in which they thrive. Focusing on the dermal
community may allow clinicians and researchers to simplify the relationship between
the skin microbiome and skin disease, as it is less affected by environmental factors.
These new findings may change the perception of the human skin microbiota as being
entirely individual. However, distinctive details in the core microbiome may provide
insight into health and genetics, as well as diet, lifestyle, and surroundings (16). While
previous studies have attempted to map the entire epidermal skin microbiome (36), a
greater understanding of the spatial scaling of microbial communities would also
enhance our understanding of its function in chronic cutaneous diseases and infec-
tions. If the dermal communities serve as a reservoir for pathogenic bacteria that drive
skin or soft tissue infections, strategies for preparing and managing patients undergo-
ing surgery should be adjusted to reduce chances of complications. Speculatively,
future preoperational procedures may include microbial analysis of the patient´s skin to
predict potentially susceptible patients at risk for a postoperational infection. Corre-
spondingly, the microbial composition of individuals suffering from chronic cutaneous
conditions may predict upcoming flares of eczema and thereby improve prophylactic
treatment. We therefore suggest that targeting different cutaneous compartments
should be prioritized in future skin microbiome studies. A connection between auto-
immune diseases or skin disorders and the microbiota may become clearer by inves-
tigating the dermal microbiota, as the dermal community is less affected by external
factors and therefore possibly more stable. Further studies are needed to determine
whether this core “universal microbiota” is present within dermal compartments across
habitats. Nevertheless, future studies into chronic skin disorders would benefit from an
increased focus on all skin compartments rather than just the epidermis, despite the
invasive nature of biopsies.

The strength of this study is that the separation of cutaneous compartments allowed
for the characterization of distinct communities at a level of detail not found in previous
studies (2). The use of DNA metabarcoding allows for bacteria to be amplified even in
very low concentrations and allows for noncultivable bacteria to also be described as
part of the overall microbial composition (37). However, in future studies, a greater
consideration of different skin habitats (including moist and sebaceous), ethnicities, and
ages of participants should be included to extend the insight into the human micro-
biome. The addition of shotgun metagenomic and metatranscriptomic approaches
would also considerably expand our understanding of the composition and functioning
of the skin microbiome within different skin compartments (13).

Conclusions. Our results reveal similar microbial compositions between healthy hip
and knee skin, while composition and functioning differed between the epidermal and
dermal compartments. The dermal compartment generally contained a more homol-
ogous microbial composition among individuals, which was a specific subset of the
epidermal microbiota. Together, these findings suggest that the human dermal micro-
biota is less variable than previously anticipated. This unexpected result is a major
contribution to the understanding of human skin microbiota in health and disease, as
the dermal communities may more accurately reflect the host’s genetic or immuno-
logical status rather than being a product of the host’s external environment.

MATERIALS AND METHODS
Ethical statement. This study was approved by the Ethics Committee of the Capital Region

(H-15012754) and by the data protection agency (HGH-2016-084) in Denmark. The study was conducted
at the Orthopedic Department of Gentofte University Hospital, Copenhagen, Denmark, in November
2016.

Participants. Fifty participants were randomly selected by consecutive recruitment of patients
eligible for primary knee arthroplasty. In Denmark, no formal records of patient ethnicities are recorded;
however, participants reflected population demographics and were therefore primarily Caucasian.
Patients signed a letter of informed consent after receiving oral and written information. Inclusion criteria
were as follows: over 18 years of age and eligible for primary knee operation in the sampling period.
Exclusion criteria were as follows: pregnancy, skin disorders, and active infections or use of antibiotics
4 weeks prior to sampling. The 50 participants enrolled included 24 males and 26 females with a mean
age of 67 years (range, 47 to 85 years) and mean body mass index of 28 kg/m2 (range, 20 to 40 kg/m2).
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Three participants had diabetes. The group contained 7 active cigarette smokers, 14 former smokers, and
28 nonsmokers.

Sample collection. Skin biopsy specimens were collected by an orthopedic surgeon under aseptic
conditions with laminar airflow in the operating room. Four punch biopsy specimens of 4 mm in
diameter (Acu-Punch; Acuderm, Inc., Fort Lauderdale, FL, USA) were collected from nondisinfected skin
of the opposite leg immediately prior to preparation for the primary knee arthroplasty. These samples
included the following: two biopsy specimens from 2 cm proximal to the supero-lateral corner of the
patella and two biopsy specimens from 2 cm proximal to the greater trochanter of the femur. One hip
and one knee skin biopsy specimen from each patient were divided into superficial (1 mm) and
remaining skin (3 mm) by scalpel in a modified version of the method described by Grice et al. (9). The
separated biopsy specimens consisted of both (i) the epidermis and the superficial dermis, including the
papillary dermal region (epidermal compartment), and (ii) the remaining dermis, including the reticular
dermal region (dermal compartment) (see Fig. S1a and b in the supplemental material). Each part of the
divided samples was transferred into RNA/DNA-free Eppendorf tubes (Eppendorf, Hamburg, Germany)
before the addition of 1 ml RNAlater (Qiagen, Hilden, Germany). The samples were then stored at 5°C for
up to 1 week and subsequently at – 80°C.

Sample preparation for Fig. S1a and b. A second set of biopsy specimens, one hip and one knee
biopsy specimen from each patient, were used for a parallel study (Lene Bay, Anne Brun Hesselvig,
Anders Odgaard, and Thomas Bjarnsholt, unpublished data). These biopsy specimens were transferred
into 9-ml S-Monovettes (Sarstedt, Nümbrecht, Germany) containing 4% formaldehyde and stored at 5°C
for up to 1 week and subsequently embedded in paraffin. The preserved tissues were prepared as
previously described (38) to obtain digital overview images of dry skin habitat sections (Fig. S1a and b).

Sample preparation. DNA extraction and PCR were performed in laminar flow hoods at the Centre
for GeoGenetics, Copenhagen, Denmark. Tissues, along with extraction controls, were first lysed using a
TissueLyser (Qiagen, Hilden, Germany) for 10 min at a frequency of 30 Hz. DNA was then extracted from
the lysed skin samples using the MO BIO PowerViral environmental RNA/DNA isolation kit (Qiagen,
Hilden, Germany) according to the manufacturer’s guidelines, and controls were treated the same way.
Metabarcoding was performed on the bacterial V3-V4 16S region, using the 341F (5=-CCTAYGGGRBGC
ASCAG-3=) and reverse 806R (5=-GGACTACNNGGGTATCTAAT-3=) primers (39). Additionally, internal tags
that ranged from 6 to 8 bp long were added to the primers to increase the number of samples
multiplexed per library. The DNA content was measured using a Qubit double-stranded DNA (dsDNA)
high-sensitivity assay kit (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) and diluted to a
concentration of 1 ng �l�1. PCR mixtures consisted of 1 �l of DNA extracts (sample or in-house positive
control) or molecular biology-grade water (Thermo Fisher, Germany) for negative controls added to
0.2 �l of 5 U/�l AmpliTaq Gold (Applied Biosystems; Thermo Fisher Scientific, Waltham, MA, USA), 2.5 �l
of 10� PCR Gold buffer, 2.5 �l of 25 mM MgCl2, 1 �l of each primer (at 25 mM/�l), 0.2 �l of 25 mM
deoxynucleoside triphosphates (dNTPs) (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA), with
cycling conditions consisting of 95°C for 5 min, 36 cycles of 95°C for 30 s, 56°C for 30 s, and 72°C for 30
s, and a final extension of 72°C for 10 min. Samples and controls were pooled into five pools and purified
using a QiaQuick PCR purification kit (Qiagen, Hilden, Germany) per the manufacturer’s instructions. To
prepare samples for sequencing, the TruSeq DNA PCR-free library preparation kit (Illumina, San Diego,
CA, USA) was used per the manufacturer’s instructions, while excess adapters and primer dimers were
removed by a final purification step using AMPure XP magnetic beads at a ratio of 1:1 volume of beads
to PCR product (Beckman Coulter, Fisher Scientific, Hampton, NH, USA). DNA libraries were quantified on
a Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) using the Agilent high-sensitivity DNA kit
(Agilent Technologies, Santa Clara, CA, USA). The completed libraries were pooled at equimolar concen-
trations and sent for 250-bp paired-end sequencing on the Illumina MiSeq platform (Illumina, San Diego,
CA, USA) at the National High-Throughput Sequencing Centre, Copenhagen, Denmark.

Bioinformatic analysis. Paired ends were merged and denoised (with a single nucleotide being the
maximum permissible error) using the USEARCH (v.10.0) package. Sequencing libraries were demulti-
plexed using a custom script, which removed adapters, primers, and internal tags using CutAdapt
(v.1.9.1) (40), while combined reads shorter than 400 bp were also removed. In order to limit erroneous
assignment of reads to samples, reads were assigned only to samples when the unique combination of
forward and reverse tags was found. Operational taxonomic units (OTUs) were clustered at the 97%
similarity level in QIIME using the UCLUST algorithm (v.1.2.22) (41), before chimeras were detected and
removed using the UCHIME de novo chimera checking algorithm (42). Taxonomy was assigned to OTU
via Ribosomal Database Project (RDP) Classifier (43), using the SILVA (v.123) reference database. After
quality filtering, the generated data set consisted of 3,477,595 high-quality 16S rRNA gene sequences
with an average length of 420 bp (standard deviation [SD], �20 bp). Finally, samples were rarefied to an
equal sampling depth of 1,032 reads. This criterion yielded a total of 79 hip and 78 knee samples,
spanning 74 dermal and 83 epidermal samples. In order to measure contamination within our samples,
we included negative controls (with water replacing the DNA template) in every PCR setup (minimum of
1 negative with every 15 samples), while a further 6 extraction blanks were also processed and
sequenced. Approximately half of these negatives had fewer than our minimum read threshold (1,032
reads) and were removed. Further investigation into the 12 negatives with sequencing suggested that
there were a few common contaminants. Reads in the negatives were scattered in low abundance across
96 OTUs, but only 19 OTUs were present in more than 3 of these controls. These are listed in Table S2
as probable contaminants.

Statistical analysis. All statistical analyses were performed within R (v.1.0.143), and all plots were
generated within the ggplot2 package (44). Read counts were converted to relative abundances (the
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compositional percentage of an observed OTU relative to the total observations of OTUs in a sample) for
downstream statistical analyses. Community similarities were calculated as Bray-Curtis similarity matrices
(45) and visualized using nonmetric multidimensional scaling analyses. The effects of the skin compart-
ment (epidermal or dermal compartment), anatomic location (knee or hip), and interpersonal variation
on microbial composition were performed using the envfit function, all of which were performed using
the vegan package (46). The effects of skin location and anatomic location were also tested on
(log-normalized) operational taxonomic unit (OTU) richness (sum of all unique OTUs in a sample), with
each serving as a fixed effect in their own model, while patient ID was included as a random effect. Mixed
linear models were constructed using the lmer function, and significance was tested using the drop1
function to perform likelihood ratio tests (chi-square), using the lme4 package (47).

Due to substantial differences in community composition and OTU richness between the epidermal
and dermal compartments in our combined analyses, samples were partitioned by their skin layer for
further independent analyses. As before, Bray-Curtis similarity matrices were generated for each com-
munity and underwent NMDS analysis. Differences in bacterial composition between anatomic locations,
biological sex, smoking, diabetic status, age, and interpersonal variation were assessed using the envfit
function. Further analysis was performed using multivariate generalized linear models, which compared
anatomic locations, biological sex, smoking, diabetic status, age, and patient ID against the bacterial
community composition. Using a negative binomial distribution and 500 iterations, model term P values
were calculated using the package MVABUND (48). Additionally, significant differences between the
community similarity distributions (derived from Bray-Curtis similarity matrices) of the epidermal and
dermal compartments were assessed using a Wilcoxon signed rank test. In testing effects on OTU
richness, mixed modeling was performed to assess the effects of all explanatory variables (age, sex,
smoking history, diabetic status, and anatomic location) on OTU richness (log normalized). As before,
likelihood ratio tests (chi-square) were performed on the models to determine significance of explanatory
variables.

The heat tree (Fig. 2) was generated using the Metacoder package within R (49). Initially, we
calculated the abundance per taxon using the calc_taxon_abund function and the epidermal and dermal
communities were compared using the compare_groups functions. The heat tree function was used to
make phylogenetic trees, with the log2 (OTU richnessepidermal/OTU richnessdermal) ratio of median pro-
portions plotted.

Indicator OTUs associated with the epidermal and dermal compartment communities were identified
using indicator species analysis on all of the data combined. However, prior to analysis, OTUs occurring
in five or fewer samples were removed. Indicator species were identified by determining statistical
significance of species site-group associations using the signassoc function within the Indic species
package (v.1.7.6) (50), while P values were corrected for multiple comparisons using Sidak’s correction
(50–52). The taxonomy of each of these significantly different OTUs was further refined by performing a
BLAST search against the NCBI 16S rRNA database and characterized by oxygen consumption based on
published literature (Fig. 3).

PICRUSt was used to predict the functional profiles of organisms in each compartment using an
extended ancestral state reconstruction algorithm to predict the presence of potential genes based on
the 16S data (53). A principal-component analysis (PCA) was performed using the PICRUSt gene ortholog
predictions. A permutational multivariate analysis of variance (PERMANOVA) test was performed using
the R (54) software package vegan (55), with 99,999 permutations performed on the gene predictions to
test for significant functional differences between the epidermal and dermal skin compartments. The
genes were aggregated into pathways using the HUMAnN2 software package (56). Mixed linear regres-
sion models were fitted with the lme4 (57) package to the log-transformed Z-scores of relative pathway
abundances, testing for significant enrichments of pathways between skin compartments, while patient
ID and sample served as random effects. The false discovery rate was controlled using the Benjamini-
Hochberg method (58) and expressed as q values. A heat map of the significantly differing pathways and
a ridge plot showing the density distributions of intraindividual differences in Z-scores between
compartments for the 25 most significant pathways were generated to illustrate these results. Data
visualization was performed using the R packages ggplot2 (44), ggridges (59), and pheatmap (60).

Data availability. All sequencing data were uploaded to the NCBI Sequence Read Archive under
BioProject accession no. PRJNA510725.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1a, TIF file, 0.8 MB.
FIG S1b, TIF file, 1.4 MB.
FIG S2, PDF file, 0.02 MB.
FIG S3, PDF file, 0.01 MB.
FIG S4, PDF file, 0.04 MB.
FIG S5, PDF file, 0.4 MB.
FIG S6, PDF file, 0.01 MB.
FIG S7, PDF file, 0.1 MB.
TABLE S1, DOCX file, 0.01 MB.
TABLE S2, DOCX file, 0.01 MB.

Universal Dermal Microbiome ®

January/February 2020 Volume 11 Issue 1 e02945-19 mbio.asm.org 11

 on F
ebruary 28, 2020 at C

openhagen U
niversity Library

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://mbio.asm.org
http://mbio.asm.org/


ACKNOWLEDGMENTS
The Lundbeck Foundation and Leo Foundation generously provided financial sup-

port for PhD Lene Bay and Professor Thomas Bjarnsholt. The authors declare no
conflicts of interest.

REFERENCES
1. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. 2009.

Bacterial community variation in human body habitats across space and
time. Science 326:1694 –1697. https://doi.org/10.1126/science.1177486.

2. Nakatsuji T, Chiang H-I, Jiang SB, Nagarajan H, Zengler K, Gallo RL. 2013.
The microbiome extends to subepidermal compartments of normal skin.
Nat Commun 4:1431–1438. https://doi.org/10.1038/ncomms2441.

3. Gao Z, Tseng CH, Pei Z, Blaser MJ. 2007. Molecular analysis of human
forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A 104:
2927–2932. https://doi.org/10.1073/pnas.0607077104.

4. Grice EA, NISC Comparative Sequencing Program, Kong HH, Conlan S,
Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR,
Green ED, Turner ML, Segre JA. 2009. Topographic and temporal diver-
sity of the human skin Microbiome. Science 324:1190 –1192. https://doi
.org/10.1126/science.1171700.

5. Oh J, Byrd AL, Park M, NISC Comparative Sequencing Program, Kong HH,
Segre JA. 2016. Temporal stability of the human skin microbiome. Cell
3:973–982. https://doi.org/10.1016/j.cell.2016.04.008.

6. Rodrigues Hoffmann A. 2017. The cutaneous ecosystem: the roles of the
skin microbiome in health and its association with inflammatory skin
conditions in humans and animals. Vet Dermatol 28:60-e15. https://doi
.org/10.1111/vde.12408.

7. Dréno B, Araviiskaia E, Berardesca E, Gontijo G, Sanchez Viera M, Xiang
LF, Martin R, Bieber T. 2016. Microbiome in healthy skin, update for
dermatologists. J Eur Acad Dermatol Venereol 30:2038 –2047. https://doi
.org/10.1111/jdv.13965.

8. Gao Z, Perez-Perez GI, Chen Y, Blaser MJ. 2010. Quantification of major
human cutaneous bacterial and fungal populations. J Clin Microbiol
48:3575–3581. https://doi.org/10.1128/JCM.00597-10.

9. Grice EA, NISC Comparative Sequencing Program, Kong HH, Renaud G,
Young AC, Bouffard GG, Blakesley RW, Wolfsberg TG, Turner ML, Segre
JA. 2008. A diversity profile of the human skin microbiota. Genome Res
18:1043–1050. https://doi.org/10.1101/gr.075549.107.

10. Zeeuwen PL, Boekhorst J, van den Bogaard EH, de Koning HD, van de
Kerkhof PM, Saulnier DM, van Swam II, van Hijum SA, Kleerebezem M,
Schalkwijk J, Timmerman HM. 2012. Microbiome dynamics of human
epidermis following skin barrier disruption. Genome Biol 13:1–18.
https://doi.org/10.1186/gb-2012-13-11-r101.

11. Kearney J, Harnby D, Gowland G, Holland KT. 1984. The follicular distri-
bution and abundance of resident bacteria on human skin. J Gen
Microbiol 130:797– 801. https://doi.org/10.1099/00221287-130-4-797.

12. Grice EA, Segre JA. 2011. The skin microbiome. Nat Rev Microbiol
9:244 –253. https://doi.org/10.1038/nrmicro2537.

13. Byrd AL, Belkaid Y, Segre JA. 2018. The human skin microbiome. Nat Rev
Microbiol 16:143–155. https://doi.org/10.1038/nrmicro.2017.157.

14. Ring HC, Bay L, Kallenbach K, Miller IM, Prens E, Saunte DM, Bjarnsholt T,
Jemec GB. 2017. Normal skin microbiota is altered in pre-clinical hidrad-
enitis suppurativa. Acta Derm Venereol 97:208 –213. https://doi.org/10
.2340/00015555-2503.

15. Oh J, NISC Comparative Sequencing Program, Byrd AL, Deming C,
Conlan S, Kong HH, Segre JA. 2014. Biogeography and individuality
shape function in human skin metagenome. Nature 514:59 – 64. https://
doi.org/10.1038/nature13786.

16. Findley K, Williams D, Grice E, Bonham V. 2016. Health disparities and the
microbiome. Trends Microbiol 24:847– 850. https://doi.org/10.1016/j.tim
.2016.08.001.

17. Ursell LK, Clemente JC, Rideout JR, Gevers D, Caporaso JG, Knight R.
2012. The interpersonal and intrapersonal diversity of human-associated
microbiota in key body sites. J Allergy Clin Immunol 129:1204 –1208.
https://doi.org/10.1016/j.jaci.2012.03.010.

18. Fahlén A, Engstrand L, Baker BS, Powles A, Fry L. 2012. Comparison of
bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch
Dermatol Res 304:15–22. https://doi.org/10.1007/s00403-011-1189-x.

19. Cosseau C, Romano-Bertrand S, Duplan H, Lucas O, Ingrassia I, Pigasse C,
Roques C, Jumas-Bilak E. 2016. Proteobacteria from the human skin

microbiota: species-level diversity and hypotheses. One Health 2:33– 41.
https://doi.org/10.1016/j.onehlt.2016.02.002.

20. Kovaleva J, Degener JE, Van Der Mei HC. 2014. Methylobacterium and its
role in health care-associated infection. J Clin Microbiol 52:1317–1321.
https://doi.org/10.1128/JCM.03561-13.

21. Ryan MP, Pembroke JT. 2018. Brevundimonas spp: emerging global
opportunistic pathogens. Virulence 9:480 – 493. https://doi.org/10.1080/
21505594.2017.1419116.

22. Stecher B, Maier L, Hardt WD. 2013. “Blooming” in the gut: how dysbiosis
might contribute to pathogen evolution. Nat Rev Microbiol 11:277–284.
https://doi.org/10.1038/nrmicro2989.

23. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P,
Parkhill J, Loman NJ, Walker AW. 2014. Reagent and laboratory contamina-
tion can critically impact sequence-based microbiome analyses. BMC Biol
12:87–12. https://doi.org/10.1186/s12915-014-0087-z.

24. Two AM, Nakatsuji T, Kotol PF, Arvanitidou E, Du-Thumm L, Hata TR, Gallo
RL. 2016. The cutaneous microbiome and aspects of skin antimicrobial
defense system resist acute treatment with topical skin cleansers. J Invest
Dermatol 136:1950–1954. https://doi.org/10.1016/j.jid.2016.06.612.

25. Cogen AL, Nizet V, Gallo RL. 2008. Skin microbiota: a source of disease or
defence? Br J Dermatol 158:442– 455. https://doi.org/10.1111/j.1365
-2133.2008.08437.x.

26. Dethlefsen L, McFall-Ngai M, Relman DA. 2007. An ecological and evo-
lutionary perspective on human-microbe mutualism and disease. Nature
449:811– 818. https://doi.org/10.1038/nature06245.

27. Grice EA. 2015. The intersection of microbiome and host at the skin
interface: genomic- and metagenomic-based insights. Genome Res 25:
1514 –1520. https://doi.org/10.1101/gr.191320.115.

28. Owens CD, Stoessel K. 2008. Surgical site infections: epidemiology,
microbiology and prevention. J Hosp Infect 70:3–10. https://doi.org/10
.1016/S0195-6701(08)60017-1.

29. Kong HH, Segre JA. 2012. Skin microbiome: looking back to move forward.
J Invest Dermatol 132:933–939. https://doi.org/10.1038/jid.2011.417.

30. Selwyn S, Ellis H. 1972. Skin bacteria and skin disinfection reconsidered.
Br Med J 1:136 –140. https://doi.org/10.1136/bmj.1.5793.136.

31. Lademann J, Otberg N, Jacobi U, Hoffman RM, Blume-Peytavi U. 2005.
Follicular penetration and targeting. J Invest Dermatol Symp Proc 10:
301–303. https://doi.org/10.1111/j.1087-0024.2005.10121.x.

32. Lange-Asschenfeldt B, Marenbach D, Lang C, Patzelt A, Ulrich M, Maltusch
A, Terhorst D, Stockfleth E, Sterry W, Lademann J. 2011. Distribution of
bacteria in the epidermal layers and hair follicles of the human skin. Skin
Pharmacol Physiol 24:305–311. https://doi.org/10.1159/000328728.

33. Ki V, Rotstein C. 2008. Bacterial skin and soft tissue infections in adults:
a review of their epidemiology, pathogenesis, diagnosis, treatment and
site of care. Can J Infect Dis Med Microbiol 19:173–184. https://doi.org/
10.1155/2008/846453.

34. Torrens C, Marí R, Alier A, Puig L, Santana F, Corvec S. 2019. Cutibacte-
rium acnes in primary reverse shoulder arthroplasty: from skin to deep
layers. J Shoulder Elbow Surg 28:839 – 846. https://doi.org/10.1016/j.jse
.2018.10.016.

35. Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen B, Andersen AS,
Krogfelt KA, Givskov M, Tolker-Nielsen T. 2009. Nonrandom distribution
of Pseudomonas aeruginosa and Staphylococcus in chronic wounds. J
Clin Microbiol 47:4084 – 4089. https://doi.org/10.1128/JCM.01395-09.

36. Bouslimani A, Porto C, Rath CM, Wang M, Guo Y, Gonzalez A, Berg-Lyon
D, Ackermann G, Moeller Christensen GJ, Nakatsuji T, Zhang L, Borkowski
AW, Meehan MJ, Dorrestein K, Gallo RL, Bandeira N, Knight R, Alexandrov
T, Dorrestein PC. 2015. Molecular cartography of the human skin surface
in 3D. Proc Natl Acad Sci U S A 112:E2120 –E2129. https://doi.org/10
.1073/pnas.1424409112.

37. Tarabichi M, Shohat N, Goswami K, Parvizi J. 2018. Can next gener-
ation sequencing play a role in detecting pathogens in synovial fluid?
Bone Joint J 100-B:127–133. https://doi.org/10.1302/0301-620X
.100B2.BJJ-2017-0531.R2.

Bay et al. ®

January/February 2020 Volume 11 Issue 1 e02945-19 mbio.asm.org 12

 on F
ebruary 28, 2020 at C

openhagen U
niversity Library

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://doi.org/10.1126/science.1177486
https://doi.org/10.1038/ncomms2441
https://doi.org/10.1073/pnas.0607077104
https://doi.org/10.1126/science.1171700
https://doi.org/10.1126/science.1171700
https://doi.org/10.1016/j.cell.2016.04.008
https://doi.org/10.1111/vde.12408
https://doi.org/10.1111/vde.12408
https://doi.org/10.1111/jdv.13965
https://doi.org/10.1111/jdv.13965
https://doi.org/10.1128/JCM.00597-10
https://doi.org/10.1101/gr.075549.107
https://doi.org/10.1186/gb-2012-13-11-r101
https://doi.org/10.1099/00221287-130-4-797
https://doi.org/10.1038/nrmicro2537
https://doi.org/10.1038/nrmicro.2017.157
https://doi.org/10.2340/00015555-2503
https://doi.org/10.2340/00015555-2503
https://doi.org/10.1038/nature13786
https://doi.org/10.1038/nature13786
https://doi.org/10.1016/j.tim.2016.08.001
https://doi.org/10.1016/j.tim.2016.08.001
https://doi.org/10.1016/j.jaci.2012.03.010
https://doi.org/10.1007/s00403-011-1189-x
https://doi.org/10.1016/j.onehlt.2016.02.002
https://doi.org/10.1128/JCM.03561-13
https://doi.org/10.1080/21505594.2017.1419116
https://doi.org/10.1080/21505594.2017.1419116
https://doi.org/10.1038/nrmicro2989
https://doi.org/10.1186/s12915-014-0087-z
https://doi.org/10.1016/j.jid.2016.06.612
https://doi.org/10.1111/j.1365-2133.2008.08437.x
https://doi.org/10.1111/j.1365-2133.2008.08437.x
https://doi.org/10.1038/nature06245
https://doi.org/10.1101/gr.191320.115
https://doi.org/10.1016/S0195-6701(08)60017-1
https://doi.org/10.1016/S0195-6701(08)60017-1
https://doi.org/10.1038/jid.2011.417
https://doi.org/10.1136/bmj.1.5793.136
https://doi.org/10.1111/j.1087-0024.2005.10121.x
https://doi.org/10.1159/000328728
https://doi.org/10.1155/2008/846453
https://doi.org/10.1155/2008/846453
https://doi.org/10.1016/j.jse.2018.10.016
https://doi.org/10.1016/j.jse.2018.10.016
https://doi.org/10.1128/JCM.01395-09
https://doi.org/10.1073/pnas.1424409112
https://doi.org/10.1073/pnas.1424409112
https://doi.org/10.1302/0301-620X.100B2.BJJ-2017-0531.R2
https://doi.org/10.1302/0301-620X.100B2.BJJ-2017-0531.R2
https://mbio.asm.org
http://mbio.asm.org/


38. Bay L, Kragh KN, Eickhardt SR, Poulsen SS, Gjerdrum LMR, Ghathian K,
Calum H, Ågren MS, Bjarnsholt T. 2018. Bacterial aggregates establish at
the edges of acute epidermal wounds. Adv Wound Care (New Rochelle)
7:105–113. https://doi.org/10.1089/wound.2017.0770.

39. Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M. 2014. Develop-
ment of a prokaryotic universal primer for simultaneous analysis of
Bacteria and Archaea using next-generation sequencing. PLoS One
9:e105592. https://doi.org/10.1371/journal.pone.0105592.

40. Martin M. 2011. Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet J 17:10 –12. https://doi.org/10
.14806/ej.17.1.200.

41. Edgar R. 2010. Search and clustering orders of magnitude faster than
BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/
btq461.

42. Edgar R, Haas B, Clemente J, Quince C, Knight R. 2011. UCHIME improves
sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200.
https://doi.org/10.1093/bioinformatics/btr381.

43. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier
for rapid assignment of rRNA sequences into the new bacterial taxon-
omy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM
.00062-07.

44. Wickham H. 2016. ggplot2: elegant graphics for data analysis. Springer
International Publishing, New York, NY.

45. Bray J, Curtis J. 1957. An ordination of the upland forest communities of
southern Wisconsin. Ecol Monogr 27:325–349. https://doi.org/10.2307/
1942268.

46. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara B,
Simpson GL, Solymos P, Stevens H, Wagner HH. 2016. vegan: community
ecology package. R Package version 2.2-1. R Foundation for Statistical
Computing, Vienna, Austria.

47. Bates D, Maechler M, Bolker B, Walker S. 2014. lme4: linear mixed-effects
models using Eigen and S4. R Package version 1, p 1–23. R Foundation
for Statistical Computing, Vienna, Austria.

48. Wang YI, Naumann U, Wright ST, Warton DI. 2012. mvabund—an R
package for model�based analysis of multivariate abundance data.
Methods Ecol Evol 3:471– 474. https://doi.org/10.1111/j.2041-210X.2012
.00190.x.

49. Foster ZSL, Sharpton T, Grunwald NJ. 2016. Metacoder: an R package for

manipulation and heat tree visualization of community taxonomic data
from metabarcoding. bioRxiv https://doi.org/10.1101/071019.

50. De Cáceres M, Legendre P. 2009. Associations between species and
groups of sites: indices and statistical inference. Ecology 90:3566 –3574.
https://doi.org/10.1890/08-1823.1.

51. Šidák Z. 1967. Rectangular confidence regions for the means of multi-
variate normal distributions. J Am Stat Assoc 62:626 – 633. https://doi
.org/10.1080/01621459.1967.10482935.

52. Bakker J. 2008. Increasing the utility of indicator species analysis. J Appl
Ecol 45:1829 –1835. https://doi.org/10.1111/j.1365-2664.2008.01571.x.

53. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA,
Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Hut-
tenhower C. 2013. Predictive functional profiling of microbial commu-
nities using 16S rRNA marker gene sequences. Nat Biotechnol 31:
814 – 821. https://doi.org/10.1038/nbt.2676.

54. R Core Team. 2018. R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. https://
www.r-project.org/.

55. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara B,
Simpson GL, Solymos P, Stevens H, Wagner HH. 2018. vegan: community
ecology package. R Package version 2.5-2. R Foundation for Statistical
Computing, Vienna, Austria. https://cran.r-project.org/package�vegan.

56. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL,
Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O,
Kelley ST, Methé B, Schloss PD, Gevers D, Mitreva M, Huttenhower C.
2012. Metabolic reconstruction for metagenomic data and its applica-
tion to the human microbiome. PLoS Comput Biol 8:e1002358. https://
doi.org/10.1371/journal.pcbi.1002358.

57. Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-
effects models using lme4 J Stat Softw 67:1– 48.

58. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J R Stat Soc Ser B
57:289 –300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

59. Wilke CO. 2018. ggridges: ridgeline plots in “ggplot2.” R Package version
0.5.0. R Foundation for Statistical Computing, Vienna, Austria. https://
cran.r-project.org/package�ggridges.

60. Kolde R. 2018. Pheatmap: pretty heatmaps. R Package version 1.0.10. R
Foundation for Statistical Computing, Vienna, Austria. https://cran.r
-project.org/package�pheatmap.

Universal Dermal Microbiome ®

January/February 2020 Volume 11 Issue 1 e02945-19 mbio.asm.org 13

 on F
ebruary 28, 2020 at C

openhagen U
niversity Library

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://doi.org/10.1089/wound.2017.0770
https://doi.org/10.1371/journal.pone.0105592
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.2307/1942268
https://doi.org/10.2307/1942268
https://doi.org/10.1111/j.2041-210X.2012.00190.x
https://doi.org/10.1111/j.2041-210X.2012.00190.x
https://doi.org/10.1101/071019
https://doi.org/10.1890/08-1823.1
https://doi.org/10.1080/01621459.1967.10482935
https://doi.org/10.1080/01621459.1967.10482935
https://doi.org/10.1111/j.1365-2664.2008.01571.x
https://doi.org/10.1038/nbt.2676
https://www.r-project.org/
https://www.r-project.org/
https://cran.r-project.org/package=vegan
https://doi.org/10.1371/journal.pcbi.1002358
https://doi.org/10.1371/journal.pcbi.1002358
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://cran.r-project.org/package=ggridges
https://cran.r-project.org/package=ggridges
https://cran.r-project.org/package=pheatmap
https://cran.r-project.org/package=pheatmap
https://mbio.asm.org
http://mbio.asm.org/

	RESULTS
	Microbial composition and richness. 
	Similarities within compartments. 
	Correlation to metavariables. 
	Taxonomy in dermal and epidermal compartments. 
	Indicator species analysis. 
	Prediction of genes and pathways. 

	DISCUSSION
	Conclusions. 

	MATERIALS AND METHODS
	Ethical statement. 
	Participants. 
	Sample collection. 
	Sample preparation. 
	Bioinformatic analysis. 
	Statistical analysis. 
	Data availability. 
	SUPPLEMENTAL MATERIAL

	ACKNOWLEDGMENTS
	REFERENCES

