16 research outputs found

    Unimolecular Reactions of Peroxy Radicals Formed in the Oxidation of α-pinene and β-pinene by Hydroxyl Radicals

    Get PDF
    Atmospheric oxidation of monoterpenes (emitted primarily by evergreen trees) is known to contribute to the formation and growth of aerosol particles. While recent research has tied the formation of organic aerosol to unimolecular chemistry of the organic peroxy radicals (RO_2) formed in the oxidation of monoterpenes, the fundamental physical chemistry of these RO_2 remains obscure. Here we use isomer-specific measurements and ab initio calculations to determine the unimolecular reaction rates and products of RO_2 derived from the hydroxyl radical (OH) oxidation of α-pinene and β-pinene. Among all of the structural isomers of the first-generation RO_2 from both monoterpenes, we find that the first-generation RO_2 produced following opening of the four-membered ring undergo fast unimolecular reactions (4 ± 2 and 16 ± 5 s^(–1) for α-pinene and β-pinene, respectively) at 296 K, in agreement with high-level ab initio calculations. The presence of the hydroxy group and carbon–carbon double bond in the ring-opened RO_2 enhances the rates of these unimolecular reactions, including endo-cyclization and H-shift via transition states involving six- and seven-membered rings. These reaction rate coefficients are sufficiently large that unimolecular chemistry is the dominant fate of these monoterpene-derived RO_2 in the atmosphere. In addition, the overall yields of first-generation α-pinene and β-pinene hydroxy nitrates, C_(10)H_(17)NO_4, at 296 K and 745 Torr are measured to be 3.3 ± 1.5% and 6.4 ± 2.1%, respectively, for conditions where all RO_2 are expected to react with NO ([NO] > 1000 ppbv). These yields are lower than anticipated

    Atmospheric autoxidation is increasingly important in urban and suburban North America

    Get PDF
    Gas-phase autoxidation—regenerative peroxy radical formation following intramolecular hydrogen shifts—is known to be important in the combustion of organic materials. The relevance of this chemistry in the oxidation of organics in the atmosphere has received less attention due, in part, to the lack of kinetic data at relevant temperatures. Here, we combine computational and experimental approaches to investigate the rate of autoxidation for organic peroxy radicals (RO_2) produced in the oxidation of a prototypical atmospheric pollutant, n-hexane. We find that the reaction rate depends critically on the molecular configuration of the RO_2 radical undergoing hydrogen transfer (H-shift). RO_2 H-shift rate coefficients via transition states involving six- and seven-membered rings (1,5 and 1,6 H-shifts, respectively) of α-OH hydrogens (HOC-H) formed in this system are of order 0.1 s^(−1) at 296 K, while the 1,4 H-shift is calculated to be orders of magnitude slower. Consistent with H-shift reactions over a substantial energetic barrier, we find that the rate coefficients of these reactions increase rapidly with temperature and exhibit a large, primary, kinetic isotope effect. The observed H-shift rate coefficients are sufficiently fast that, as a result of ongoing NO_x emission reductions, autoxidation is now competing with bimolecular chemistry even in the most polluted North American cities, particularly during summer afternoons when NO levels are low and temperatures are elevated

    Unimolecular Reactions of Peroxy Radicals Formed in the Oxidation of α-pinene and β-pinene by Hydroxyl Radicals

    Get PDF
    Atmospheric oxidation of monoterpenes (emitted primarily by evergreen trees) is known to contribute to the formation and growth of aerosol particles. While recent research has tied the formation of organic aerosol to unimolecular chemistry of the organic peroxy radicals (RO_2) formed in the oxidation of monoterpenes, the fundamental physical chemistry of these RO_2 remains obscure. Here we use isomer-specific measurements and ab initio calculations to determine the unimolecular reaction rates and products of RO_2 derived from the hydroxyl radical (OH) oxidation of α-pinene and β-pinene. Among all of the structural isomers of the first-generation RO_2 from both monoterpenes, we find that the first-generation RO_2 produced following opening of the four-membered ring undergo fast unimolecular reactions (4 ± 2 and 16 ± 5 s^(–1) for α-pinene and β-pinene, respectively) at 296 K, in agreement with high-level ab initio calculations. The presence of the hydroxy group and carbon–carbon double bond in the ring-opened RO_2 enhances the rates of these unimolecular reactions, including endo-cyclization and H-shift via transition states involving six- and seven-membered rings. These reaction rate coefficients are sufficiently large that unimolecular chemistry is the dominant fate of these monoterpene-derived RO_2 in the atmosphere. In addition, the overall yields of first-generation α-pinene and β-pinene hydroxy nitrates, C_(10)H_(17)NO_4, at 296 K and 745 Torr are measured to be 3.3 ± 1.5% and 6.4 ± 2.1%, respectively, for conditions where all RO_2 are expected to react with NO ([NO] > 1000 ppbv). These yields are lower than anticipated

    Atmospheric autoxidation is increasingly important in urban and suburban North America

    Get PDF
    Gas-phase autoxidation—regenerative peroxy radical formation following intramolecular hydrogen shifts—is known to be important in the combustion of organic materials. The relevance of this chemistry in the oxidation of organics in the atmosphere has received less attention due, in part, to the lack of kinetic data at relevant temperatures. Here, we combine computational and experimental approaches to investigate the rate of autoxidation for organic peroxy radicals (RO_2) produced in the oxidation of a prototypical atmospheric pollutant, n-hexane. We find that the reaction rate depends critically on the molecular configuration of the RO_2 radical undergoing hydrogen transfer (H-shift). RO_2 H-shift rate coefficients via transition states involving six- and seven-membered rings (1,5 and 1,6 H-shifts, respectively) of α-OH hydrogens (HOC-H) formed in this system are of order 0.1 s^(−1) at 296 K, while the 1,4 H-shift is calculated to be orders of magnitude slower. Consistent with H-shift reactions over a substantial energetic barrier, we find that the rate coefficients of these reactions increase rapidly with temperature and exhibit a large, primary, kinetic isotope effect. The observed H-shift rate coefficients are sufficiently fast that, as a result of ongoing NO_x emission reductions, autoxidation is now competing with bimolecular chemistry even in the most polluted North American cities, particularly during summer afternoons when NO levels are low and temperatures are elevated

    Intramolecular Hydrogen Shift Chemistry of Hydroperoxy-Substituted Peroxy Radicals

    Get PDF
    Gas-phase autoxidation – the sequential regeneration of peroxy radicals (RO_2) via intramolecular hydrogen shifts (H-shifts) followed by oxygen addition – leads to the formation of organic hydroperoxides. The atmospheric fate of these peroxides remains unclear, including the potential for further H-shift chemistry. Here, we report H-shift rate coefficients for a system of RO_2 with hydroperoxide functionality produced in the OH-initiated oxidation of 2-hydroperoxy-2-methylpentane. The initial RO_2 formed in this chemistry are unable to undergo α-OOH H-shift (HOOC–H) reactions. However, these RO_2 rapidly isomerize (>100 s^(–1) at 296 K) by H-shift of the hydroperoxy hydrogen (ROO–H) to produce a hydroperoxy-substituted RO_2 with an accessible α-OOH hydrogen. First order rate coefficients for the 1,5 H-shift of the α-OOH hydrogen are measured to be ∼0.04 s^(–1) (296 K) and ∼0.1 s^(–1) (318 K), within 50% of the rate coefficients calculated using multiconformer transition state theory. Reaction of the RO_2 with NO produces alkoxy radicals which also undergo rapid isomerization via 1,6 and 1,5 H-shift of the hydroperoxy hydrogen (ROO–H) to produce RO_2 with alcohol functionality. One of these hydroxy-substituted RO_2 exhibits a 1,5 α-OH (HOC–H) H-shift, measured to be ∼0.2 s^(–1) (296 K) and ∼0.6 s^(–1) (318 K), again in agreement with the calculated rates. Thus, the rapid shift of hydroperoxy hydrogens in alkoxy and peroxy radicals enables intramolecular reactions that would otherwise be inaccessible

    Rapid Hydrogen Shift Scrambling in Hydroperoxy-Substituted Organic Peroxy Radicals

    Get PDF
    Using quantum mechanical calculations, we have investigated hydrogen shift (H-shift) reactions in peroxy radicals derived from the atmospheric oxidation of 1-pentene (CH_2═CHCH_2CH_2CH_3) and its monosubstituted derivatives. We investigate the peroxy radicals, HOCH_2CH(OO)CR_1HCH_2CH_3, HOCH_2CH(OO)CH_2CR_1HCH_3, and HOCH_2CH(OO)CH_2CH_2CR_1H_2, where the substituent R_1 is an alcoholic (OH), a hydroperoxy (OOH), or a methoxy (OCH_3) group. For peroxy radicals with an OOH substituent, the H-shift reaction from the hydrogen atom on the OOH group to the OO group is extremely fast. We find that the rate constants of this type of H-shift reactions are greater than 10^3 s^(–1) for both the forward and the reverse reactions. It leads to the formation of two different radical isomers that react through different reaction mechanisms and yield different products. These very fast H-shift reactions are much faster than the reactions with NO and HO_2 under most atmospheric conditions and must be included in the atmospheric modeling of volatile organic compounds where hydroperoxy peroxy radicals are formed

    Calculated Hydrogen Shift Rate Constants in Substituted Alkyl Peroxy Radicals

    No full text
    Peroxy radical hydrogen shift (H-shift) reactions are key to the formation of highly oxidized organic molecules and particle growth in the atmosphere. In an H-shift reaction, a hydrogen atom is transferred to the peroxy radical from within the same molecule to form a hydroperoxy alkyl radical, which can undergo O2 uptake and further H-shift reactions. Here we use an experimentally verified theoretical approach based on multi-conformer transition state theory to calculate rate constants for a systematic set of H-shifts. Our results show that substitution at the carbon, from which the hydrogen is abstracted, with OH, OOH, and OCH3 substituents lead to increases in the rate constant by factors of 50 or more. Reactions with CO and CC substituents lead to resonance stabilized carbon radicals and have rate constants that increase by more than a factor of 400. In addition, our results show that reactions leading to secondary carbon radicals (alkyl substituent) are 100 times faster than those leading to primary carbon radicals, and those leading to tertiary carbon radicals a factor of 30 faster than those leading to secondary carbon radicals. When the carbon from which the H is abstracted is secondary and has an OH, OOH, OCH3, CO, or CC substituent, H-shift rate constants are larger than 0.01 s–1 and need to be considered in most atmospheric conditions. H-shift reaction rate constants are largest and can reach 1 s–1 when the ring size in the transition state is 6, 7, or 8 atoms (1,5, 1,6, or 1,7 H-shift). Thus, H-shift reactions are likely much more prevalent in the atmosphere than previously considered

    Cost-Effective Implementation of Multiconformer Transition State Theory for Peroxy Radical Hydrogen Shift Reactions

    Get PDF
    Based on a small test system, (R)-CH(OH)(OO center dot)CH2CHO, we have developed a cost-effective approach to the practical implementation of multiconformer transition state theory for peroxy radical hydrogen shift reactions at atmospherically relevant temperatures. While conformer searching is crucial for accurate reaction rates, an energy cutoff can be used to significantly reduce the computational cost with little loss of accuracy. For the reaction barrier, high-level calculations are needed, but the highest level of electronic structure theory is not necessary for the relative energy between conformers. Improving the approach to both transition state theory and electronic structure theory decreases the calculated reaction rate significantly, so low-level calculations can be used to rule out slow reactions. Further computational time can be saved by approximating the tunneling coefficients for each transition state by only that of the lowest-energy transition state. Finally, we test and validate our approach using higher-level theoretical values for our test system and existing experimental results for additional peroxy radical hydrogen shift reactions in three slightly larger systems.Peer reviewe
    corecore