Supporting Information for "Unimolecular Reactions of Peroxy Radicals Formed in the Oxidation of α-pinene and β-pinene by Hydroxyl Radicals"

Lu Xu ${ }^{\dagger}$, Kristian H. Møller ${ }^{\S}$, John D. Crounse ${ }^{\dagger}$, Rasmus V. Otkjær ${ }^{\S}$, Henrik G. Kjaergaard ${ }^{\S}$, Paul O. Wennberg ${ }^{\dagger}{ }^{\perp}$
${ }^{\dagger}$ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
${ }^{\S}$ Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
${ }^{\perp}$ Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
Table of Contents
S1. Peak identification of α-pinene and β-pinene hydroxy nitrates 3
S2. Relationship between the (ring-opened HN):(ring-retained HNs) ratio and RO_{2} lifetimes. 6
S3. Computational approach 9
S3.1 Dipole moments and polarizabilities 9
S5.2 The rate coefficients of unimolecular reactions 9
S5.3 Calculations on the ring-opening fraction of hydroxy alkyl radicals 12
S4. Kinetic box model to simulate the relationship between the (ring-opened HN):(ring-retainedHNs) ratio and RO_{2} lifetimes14
S5. Yields of α-pinene and β-pinene hydroxy nitrates. 15
S6. Discussion of branching ratios and associated uncertainties in α-pinene oxidation. 16

S1. Peak identification of $\boldsymbol{\alpha}$-pinene and $\boldsymbol{\beta}$-pinene hydroxy nitrates

The structural assignment of α-pinene and β-pinene hydroxy nitrate isomers is achieved by the collection of several chromatograms. Firstly, the ring-opened HNs (i.e., $3-\mathrm{OH}, 8-\mathrm{ONO}_{2}$ for $\alpha-$ pinene and $1-\mathrm{OH}, 8-\mathrm{ONO}_{2}$ for β-pinene) are identified by adding O_{3} to the chamber after photooxidation. The ring-opened HNs are unsaturated and thus react with O_{3} while the ringretained HN isomers are saturated and will not do so. After the photooxidation ceases, we remove the chamber content through a cold trap (i.e., $6.5 \mathrm{~m} \frac{1 / 4}{}$ inch PFA tubing submerged in $-60^{\circ} \mathrm{C}$ isopropanol + liquid nitrogen bath). The oxidation products are trapped, but volatile compounds including precursor hydrocarbon, $\mathrm{NO}, \mathrm{NO}_{2}$ are not. Then, we remove the tubing from the trap and use a flow of zero air to send the trapped analytes back to chamber. 2-4 ppmv O_{3} is added to chamber using an O_{3} generator. We also inject approximately 90 ppmv cyclohexane, which serves as an OH scavenger. As shown in Figure S 1, the last peaks for both monoterpenes disappeared after O_{3} addition, indicating that they are the ring-opened HNs.

The HNs with the $-\mathrm{ONO}_{2}$ group on the less-substituted carbon ($2-\mathrm{OH}, 3-\mathrm{ONO}_{2}$ for α-pinene and $2-\mathrm{OH}, 1-\mathrm{ONO}_{2}$ for β-pinene) are identified from NO_{3} radical oxidation experiments. This approach is based on the assumption that NO_{3} radicals react with alkenes by primarily adding to the less-substituted olefinic carbon ${ }^{1}$. Oxygen adds to the alkyl radical and these RO_{2} react with other RO_{2} to produce hydroxy nitrate (Scheme S 3). We perform NO_{3} oxidation experiments by mixing $\sim 200 \mathrm{ppb} \mathrm{NO}$ and $\sim 300 \mathrm{ppb} \mathrm{O}_{3}$ in an 800 L chamber, waiting for 1 hr to produce NO_{3} and $\mathrm{N}_{2} \mathrm{O}_{5}$, and injecting about $80 \mathrm{ppbv} \alpha$-pinene or β-pinene. The chromatograms of HNs from NO_{3} oxidation experiments are shown in Figure S 2. For both α-pinene and β-pinene, only one peak is resolved from NO_{3} oxidation experiments and the retention time of this peak matches that of the first in OH oxidation experiments.

The remaining peak in the OH oxidation is identified based on previous finding that the retention order for HNs with similar structures is generally tertiary -OH , secondary -OH , and then primary -OH for the same GC column ${ }^{2}$. This observation has a plausible rational as the primary -OH likely has stronger interaction with GC column than secondary or tertiary OH due to less shielding effects. Thus, the second peak in the α-pinene chromatogram is assigned to $3-\mathrm{OH}, 2-$ ONO_{2}, which has a secondary -OH and elutes later than $2-\mathrm{OH}, 3-\mathrm{ONO}_{2}$ with a tertiary -OH . Similarly, the second peak in the β-pinene chromatogram is assigned to $1-\mathrm{OH}, 2-\mathrm{ONO}_{2}$. We further
verify the structural assignment of HN peaks by comparing the chromatograms between α-pinene and β-pinene using the same GC temperature profile (Figure S 3). α-pinene $3-\mathrm{OH}, 2-\mathrm{ONO}_{2}$ elutes between β-pinene $2-\mathrm{OH}, 1-\mathrm{ONO}_{2}$ and $1-\mathrm{OH}, 2-\mathrm{ONO}_{2}$, which is consistent with the rule of thumb described above. The ring-opened HNs elute later than ring-retained HNs because the ring-opened HNs are more elongated.

Each peak in the 1 m chromatogram represents one structural isomer of HNs , but each peak includes more than one diastereoisomer. Theoretically, there are ten diastereoisomers for α-pinene HNs and five for β-pinene HNs, as shown in Scheme S 2. These diasteroisomers can be better separated using a 5 m Restek RTX-1701 GC column (Figure S 10). For example, all four ringretained β-pinene HNs are separated with a 5 m GC column. The first peak in α-pinene HNs with 1 m GC is separated into two peaks with 5 m GC . Not all ten diastereoisomers are separated for $\alpha-$ pinene HNs, likely due to some diastereoisomers co-eluting. Despite of improved separation, significant transmission loss of the ring-opened HN (i.e., the last peak) is observed in the 5 m GC . Because the key information for determination of the RO_{2} isomerization rate is the separation of ring-opened HNs from ring-retained HNs (e.g., $3-\mathrm{OH}, 8-\mathrm{ONO}_{2}$ vs. $3-\mathrm{OH}, 2-\mathrm{ONO}_{2}+2-\mathrm{OH}, 3-\mathrm{ONO}_{2}$ in the α-pinene system), all of which are adequately separately using 1 mGC , we focus our analysis on the data produced using the 1 m GC column.

For α-pinene, the abundance of ring-retained HNs and ring-opened HN is determined by summing up the chromatogram signal from $700-1050 \mathrm{~s}$ and $1050-1350 \mathrm{~s}$, respectively, after subtracting the sample background. For β-pinene, the second peak has an apparent tailing, which interference with the signal of the third peak. We apply Lorentzian function to represent the tailing of the second peak (i.e., 1150-1800 s), extrapolate the fitting, and subtract the fitted function from the $1800-2500 \mathrm{~s}$ data (Figure S 11). The abundance of the ring-opened HN (i.e., the third peak) is determined by summing up the corrected signal between 1800 and 2500 s . The abundance of the ring-retained HNs is determined by summing up the signal between 500 s and 2500 s and then subtracting the abundance of the third peak. The uncertainty in the isomer abundance mainly arises from the extrapolation of the tail of the second peak. To characterize the uncertainty in ring-opened $\mathrm{HN} /$ ring-retained HNs ratio caused by the extrapolation, we applied bootstrap analysis. In the analysis, we randomly select the start point (within range 1100-1200 s) and stop point (within range 1700-1800 s) of the Lorentzian fit and then calculate the isomer ratio of each bootstrap trial.

The 25th and 75th percentiles of 1000 trials are used to represent the uncertainty of isomer ratio, which is within 12% of the median value.

To further separate the structural isomers of the α-pinene ring-retained HNs, we use a deconvolution algorithm ${ }^{3}$ to analyze the 1 m chromatograms. Four equal-width Gaussian functions are fitted to the chromatogram signal from 700 to 1050 s , with two peaks representing the 3-OH,2ONO_{2} and the other two peaks representing $2-\mathrm{OH}, 3-\mathrm{ONO}_{2}$. A representative chromatogram fitting is shown in Figure S 12. For β-pinene, the four ring-retained HNs are clearly separated with 5 m GC, so we use the 5 m GC to obtain the relative abundance of ring-retained HNs. For the diastereoisomer pair of β-pinene $1-\mathrm{OH}, 2-\mathrm{ONO}_{2}$, the abundance of syn isomer is roughly 4 times higher than that of anti isomer, assuming the same sensitivity towards both diastereoisomers. This observation suggests that O_{2} preferentially adds to $1-\mathrm{OH}, \mathrm{R} \cdot$ from the less sterically hindered side without the two methyl substituents on the four-membered ring.

The GC transmission efficiency of an analyte is determined by the ratio of total chromatogram signal to the amount of analyte trapped in the GC (i.e., product of signal during direct sampling from the bag and trapping time). In the experiments with $>1000 \mathrm{ppbv} \mathrm{NO}$ when all hydroxy nitrate isomers are produced, the GC transmission efficiencies of α-pinene and β pinene hydroxy nitrates are $79 \pm 4 \%$ and $99 \pm 5 \%$, respectively. In the experiments with no additional NO injection when only ring-retained hydroxy nitrates are produced, the GC transmission efficiencies of α-pinene and β-pinene hydroxy nitrates are $86 \pm 5 \%$ and 100%, respectively. The similar transmission efficiencies between experiments with different NO concentrations suggest that the transmission efficiency is isomer-independent within each monoterpene.

Different GC temperature profiles are used, depending on monoterpenes and column length.

- α-pinene and $1 \mathrm{~m} \mathrm{GC}:-20^{\circ} \mathrm{C},+20^{\circ} \mathrm{C} \mathrm{min}^{-1}$ until $50^{\circ} \mathrm{C}$, then $+3^{\circ} \mathrm{C} \mathrm{min}^{-1}$ until $120^{\circ} \mathrm{C}$, hold 3 min.
- α-pinene and $5 \mathrm{~m} \mathrm{GC}: 30^{\circ} \mathrm{C},+20^{\circ} \mathrm{C} \mathrm{min}^{-1}$ until $80^{\circ} \mathrm{C}$, hold 100 min , then $+20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ until $150^{\circ} \mathrm{C}$, hold 10 min .
- β-pinene and $1 \mathrm{~m} \mathrm{GC}:-20^{\circ} \mathrm{C},+20^{\circ} \mathrm{C} \mathrm{min}^{-1}$ until $80^{\circ} \mathrm{C}$, hold 25 min , then $+10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ until $130^{\circ} \mathrm{C}$, hold 15 min .
- β-pinene and $5 \mathrm{~m} \mathrm{GC}: 30^{\circ} \mathrm{C},+20^{\circ} \mathrm{C} \mathrm{min}^{-1}$ until $110^{\circ} \mathrm{C}$, hold 25 min , then $+20^{\circ} \mathrm{C} \mathrm{min}-1$ until $150^{\circ} \mathrm{C}$, hold 4 min .

S2. Relationship between the (ring-opened HN):(ring-retained HNs) ratio and RO_{2} lifetimes

We utilize the ratio of the ring-opened HN relative to that of the ring-retained HNs to probe the unimolecular reactions of ring-opened RO_{2}. Below, we use a mathematical derivation to illustrate the relationship between the (ring-opened HN):(ring-retained HNs) ratio and RO_{2} bimolecular and unimolecular lifetimes. We use α-pinene $2-\mathrm{OH}, 3-\mathrm{ONO}_{2}$ as an example of ring-retained $\mathrm{HN} . \alpha-$ pinene $3-\mathrm{OH}, 8-\mathrm{ONO}_{2}$ is the ring-opened HN . In the absence of secondary chemistry, the production rates of $3-\mathrm{OH}, 8-\mathrm{ONO}_{2}$ and $2-\mathrm{OH}, 3-\mathrm{ONO}_{2}$ at time t_{i} are defined in Eqn . $\mathrm{S}(1)$ and $\mathrm{S}(2)$.

$$
\begin{array}{ll}
\frac{\mathrm{d}\left[3-\mathrm{OH}, 8-\mathrm{ONO}_{2}\right]}{\mathrm{dt}}=\mathrm{BR}_{3-\mathrm{OH}, 8-\mathrm{ONO} 2} \times \mathrm{k}_{\mathrm{RO}_{2}+\mathrm{NO}}\left[3-\mathrm{OH}, 8-\mathrm{RO}_{2}\right][\mathrm{NO}] & \text { Eqn. } \mathrm{S}(1) \\
\frac{\mathrm{d}\left[2-\mathrm{OH}, 3-\mathrm{ONO}_{2}\right]}{\mathrm{dt}}=\mathrm{BR}_{2-\mathrm{OH}, 3-\mathrm{ONO} 2} \times \mathrm{k}_{\mathrm{RO}_{2}+\mathrm{NO}}\left[2-\mathrm{OH}, 3-\mathrm{RO}_{2}\right][\mathrm{NO}] & \text { Eqn. S(2) }
\end{array}
$$

where the BR_{3}-OH,8-ONO2 and $\mathrm{BR}_{2}-\mathrm{OH}, 3-\mathrm{ONO} 2$ are the branching ratio to produce organic nitrate from $\mathrm{RO}_{2}+\mathrm{NO}$.

The time-rate-of-change of the two RO_{2} at time t, in the absence of $\mathrm{RO}_{2}+\mathrm{RO}_{2}$ chemistry (reasonable assumption given the low VOC concentration in this study) can be described by Eqn. $S(3)$ and $S(4)$

where, $\mathrm{Y}_{3-\mathrm{OH}, 8-\mathrm{RO} 2}$ and $\mathrm{Y}_{2 \text {-OH,3-RO2 }}$ are the yields of corresponding $\mathrm{RO}_{2}, \mathrm{k}_{a \mathrm{p}+\mathrm{OH},} \mathrm{k}_{\mathrm{RO} 2+\mathrm{NO},} \mathrm{k}_{\mathrm{RO} 2+\mathrm{HO} 2}$, $\mathrm{k}_{\text {unimolecular }}$ are the rate coefficients for α-pinene $+\mathrm{OH}, \mathrm{RO}_{2}+\mathrm{NO}, \mathrm{RO}_{2}+\mathrm{HO}_{2}$, and RO_{2} unimolecular reactions, respectively. We assume that $\mathrm{krO}_{\mathrm{RO}+\mathrm{NO}}$ and $\mathrm{krO}_{\mathrm{R} 2+\mathrm{HO}}$ are isomer independent and all the branching ratios and RO_{2} yields are constants.

The steady state concentration of RO_{2} can be expressed by:

$$
\left[3-\mathrm{OH}, 8-\mathrm{RO}_{2}\right]=\frac{\mathrm{Y}_{3-\mathrm{OH}, 8-\mathrm{RO}}^{2}}{} \times \mathrm{k}_{\text {ap }+\mathrm{OH}}[\alpha \text {-pinene }][\mathrm{OH}] \quad \text { Eqn. } \mathrm{S}(5)
$$

$$
\begin{equation*}
\left[2-\mathrm{OH}, 3-\mathrm{RO}_{2}\right]=\frac{\mathrm{Y}_{2-\mathrm{OH}, 3-\mathrm{RO}}^{2}}{} \times \mathrm{k}_{\mathrm{ap}+\mathrm{OH}}[\alpha-\mathrm{pinene}][\mathrm{OH}] \tag{6}
\end{equation*}
$$

Substituting Eqn. $\mathrm{S}(5)$ and $\mathrm{S}(6)$ into the ratio between Eqn. $\mathrm{S}(1)$ and $\mathrm{S}(2)$, we get

The RO_{2} unimolecular lifetime $\tau_{\text {unimolecular }}$ (defined in Eqn. $\mathrm{S}(8)$) is a constant, but the instantaneous RO_{2} bimolecular lifetime $\tau_{\text {bimolecular, ins }}$ (defined in Eqn. $\mathrm{S}(9)$) changes over the duration of experiments due to varying $\left[\mathrm{HO}_{2}\right]$ and $[\mathrm{NO}]$.

$$
\begin{aligned}
& \tau_{\text {unimolecular }}=\frac{1}{\mathrm{k}_{\text {unimolecular }}} \quad \text { Eqn. } \mathrm{S}(8) \\
& \tau_{\text {bimolecularins }}=\frac{1}{\mathrm{k}_{\mathrm{RO}_{2}+\mathrm{NO}^{2}}\left[\mathrm{NO}_{t_{i}}+\mathrm{k}_{\mathrm{RO}_{2}+\mathrm{HO}_{2}}\left[\mathrm{HO}_{2}\right]_{t_{i}}\right.} \text { Eqn. } \mathrm{S}(9)
\end{aligned}
$$

Substitute Eqn. S(8) and S(9) into Eqn. S(7), we get

By integrating Eqn. $\mathrm{S}(10)$ over the duration of the experiment, we get

$$
\begin{equation*}
\frac{\Delta\left[3-\mathrm{OH}, 8-\mathrm{ONO}_{2}\right]}{\Delta\left[2-\mathrm{OH}, 3-\mathrm{ONO}_{2}\right]}=\frac{\mathrm{BR}_{3-\mathrm{OH}, 8-\mathrm{ONO}}^{2}}{} \mathrm{BR}_{2-\mathrm{OH}, 3-\mathrm{ONO}_{2}} \times \frac{\mathrm{Y}_{3-\mathrm{OH}, 8-\mathrm{RO}_{2}}}{\mathrm{Y}_{2-\mathrm{OH}, 3-\mathrm{RO}_{2}}} \times \frac{\tau_{\text {unimolecular }}}{\tau_{\text {unimolecular }}+\tau_{\text {bimolecular }}} \tag{11}
\end{equation*}
$$

where $\tau_{\text {bimolecular }}$ represents the average RO_{2} bimolecular lifetime over the duration of the experiment. Thus, by plotting $\frac{\Delta\left[3-\mathrm{OH}, 8-\mathrm{ONO}_{2}\right]}{\Delta\left[2-\mathrm{OH}, 3-\mathrm{ONO}_{2}\right]}$ as a function of τ bimolecular, we can calculate $\tau_{\text {unimolecular, }}$ which is $1 / \mathrm{k}_{\text {unimolecular. }}$. In the actual analysis, the sum of two structural isomers of the ring-retained $\mathrm{HNs}\left(2-\mathrm{OH}, 3-\mathrm{ONO}_{2}\right.$ and $3-\mathrm{OH}, 2-\mathrm{ONO}_{2}$) is used.

To calculate $\tau_{\text {bimolecular, }}$ we estimate the concentrations of NO and HO_{2} from modified Master Chemical Mechanims (MCM) ${ }^{4}$. The major modifications we make are (1) updating the nitrate branching ratio based on measurements (Section S6) and (2) updating the ring-opening fraction of activated alkyl radical based on RO-CCSD(T)-F12a/VDZ-F12// 1 B97X-D/aug-cc-
pVTZ calculation (Section S5.3). We also include the unimolecular reactions of ring-opened RO_{2}. Because a myriad of products is produced from the unimolecular reactions, we assume the unimolecular reactions of ring-opened RO_{2} produce a generic RO_{2} in the model. As this assumption conserves the RO_{2} concentration, unimolecular reactions have little effect on the NO and HO_{2} concentrations.

The measured concentrations of NO, hydrocarbon (α-pinene or β-pinene), and $\mathrm{CH}_{3} \mathrm{ONO}$ are used as initial concentrations in MCM. The measured spectral radiance of the chamber light is input in MCM, but is adjusted until the modeled hydrocarbon decay agrees with measurements. The modeled NO and HO_{2} concentrations over the course of photooxidation are used to calculate τ bimolecular, ins. As the NO and HO_{2} concentrations change over time, we calculate an average $\tau_{\text {bimolecular }}$ by weighting the $\tau_{\text {bimolecular,ins }}$ by the instantaneous α-pinene consumption amount in each simulation time step. The uncertainty in $\tau_{\text {bimolecular }}$ is represented by the range of $\tau_{\text {bimolecular,ins }}$ from the beginning to the end of photooxidation. As shown in Figure 2, the uncertainty increases with longer $\tau_{\text {bimolecular. }}$

For experiments with no initial NO injection (i.e., Experiments 6 and 13 in Table S 1), we estimate the concentrations of NO and HO_{2} by following the procedures in Crounse et al. and Teng et al. ${ }^{5-6}$ In brief, the HO_{2} concentration is calculated from the measured production rate of $\mathrm{H}_{2} \mathrm{O}_{2}$ and rate coefficient for the $\mathrm{HO}_{2}+\mathrm{HO}_{2}$. The NO concentration is inferred from HO_{2} concentration and the measured production rates of hydroxy nitrate and hydroxy hydroperoxides. The calculated $\tau_{\text {bimolecular }}$ from this method are 3.8 s and 8.9 s for Experiments 6 and 13 , respectively, which agree well with the values estimated using MCM, which are 5.7 s and 9.5 s , respectively.

We also calculate τ bimolecular using the default nitrate branching ratio in MCM. Figure S 13 compares the $\tau_{\text {bimolecular }}$ calculated by using updated and default nitrate branching ratio. The difference is negligible. This is mainly because NO concentration is close to its initial concentration, as a result of small OH exposure in the experiments.

S3. Computational approach

S3.1 Dipole moments and polarizabilities

Dipole moments and polarizabilities are calculated for (1) the 15 different hydroxy nitrates formed by addition of $\mathrm{OH}, \mathrm{O}_{2}$ and subsequently NO to α-pinene and β-pinene (Table S 2); (2) the 15 different hydroxy hydroperoxides formed by addition of $\mathrm{OH}, \mathrm{O}_{2}$ and reaction with HO_{2} to α-pinene and β-pinene (Table S 3); (3) glycolaldehyde used as a calibration reference and endoperoxide ketoaldehyde (P2 in Scheme 3) formed later in the α-pinene oxidation (Table S 4).

The dipole moments and polarizabilities are calculated using an approach previously employed ${ }^{7-9}$. Briefly, the structures are drawn and a conformational sampling is carried out using MMFF in Spartan ' 144^{10-16}. All resulting structures are optimized at the B3LYP/6-31+G(d) level in Gaussian 16, rev. A. $03{ }^{17-22}$ with default convergence criteria and integration grid. All unique structures within $15 \mathrm{~kJ} / \mathrm{mol}$ in electronic energy of the lowest-energy conformer are further optimized using B3LYP/cc-pVTZ ${ }^{23}$. The average dipole moment of each structure is calculated as a Boltzmann weighted average of the conformers at 298 K . The polarizability is calculated only for the lowest-energy conformer of each isomer, as it varies by less than 3% between conformers of the same compound. The calculated CIMS sensitivities of a few test compounds using the augmented aug-cc-pVTZ basis set change by less than 4% compared to the values obtained using cc-pVTZ, see Table S 5.

S5.2 The rate coefficients of unimolecular reactions

The rate coefficients of the unimolecular reactions of the peroxy radicals are calculated using the approach by Møller et al. ${ }^{24}$ For the reactant and transition state, a conformational sampling is carried out in Spartan'14 or '16 using MMFF with a neutral charge enforced on the radical center ${ }^{10-16,25}$. For the reactant, the input is a geometry simply drawn. For the transition state, the conformational sampling is preceded by an optimization using B3LYP/6-31+G(d) in Gaussian 16, rev. A. 03 , which is then used as input for the conformer search ${ }^{17-22}$. Furthermore, during the conformational sampling of the transition state, three bond lengths are constrained to the values from the optimized TS: For the H -shifts, the peroxy $\mathrm{O}-\mathrm{O}$ length, the $\mathrm{O} \cdots \mathrm{H}$ length and the $\mathrm{H} \cdots \mathrm{C}$ (or $\mathrm{H}^{\cdots \mathrm{O}}$) length and for the endoperoxide formations, the peroxy O-O length, the length of the $\mathrm{O} \cdots \mathrm{C}$ bond forming and the length of the $\mathrm{C}-\mathrm{C}$ bond going from a double to a single bond ${ }^{24}$. The structures resulting from the conformer searches are optimized using B3LYP/6-31+G(d) in

Gaussian 16. For the transition states, the free transition state optimization is preceded by a constrained optimization using the same constraints as for the conformational sampling. Conformers within $1 \cdot 10^{-5}$ hartree and $1.5 \cdot 10^{-2} \mathrm{D}$ in energy and dipole moment, respectively, of each other are identified as duplicates and only one is kept. ${ }^{24}$ All unique conformers with electronic energies within $2 \mathrm{kcal} / \mathrm{mol}$ of the lowest-energy conformer are further optimized at the $\omega \mathrm{B} 97 \mathrm{X}$ -D/aug-cc-pVTZ level of theory ${ }^{23,26-27}$. In Møller et al., a cut-off based on electronic energy at this level was found to be suitable.

For the lowest-energy conformer (based on electronic plus zero-point vibrational energy (ZPVE)) at this level, an RO-CCSD(T)-F12a/VDZ-F12// 1 B97X-D/aug-cc-pVTZ (abbreviated F12) single-point calculation is done using Molpro $2012{ }^{28-34}$. This has not been done for H -shifts that abstract from an OH group, and thus the rate coefficients for these are expected to have a slightly higher uncertainty. All F12 calculations have T1 values lower than 0.025 , which is well below the value of 0.04 generally accepted for open-shell systems ${ }^{35-37}$. For the reactions of A1, Gaussian 09, rev. D. 01 was used instead of Gaussian 16, but the approach was otherwise identical. For both the calculations in Gaussian 09 and 16, the default convergence criteria were used along with the ultrafine integration grid, which is the default in Gaussian 16. In Møller et al., it was found that the default optimization convergence criteria in Gaussian 09 yielded rate coefficients within 1% of those obtained using "opt=verytight".

From the B3LYP/6-31+G(d) optimized TS structure of the conformer corresponding to the lowest-energy conformer (based on electronic plus ZPVE) at the ω B97X-D/aug-cc-pVTZ level, an IRC is calculated at the B3LYP/6-31+G(d) level using the "calcall" keyword. The IRC endpoints are optimized first using B3LYP/6-31+G(d) and subsequently using ω B97X-D/aug-ccpVTZ. Finally, an F12 single-point calculation is done. Eckart tunneling coefficients are calculated in MATLAB R2016b using barrier heights with F12 electronic energies and ω B97X-D/aug-ccpVTZ ZPVE and the imaginary frequency of the TS calculated using ω B97X-D/aug-cc-pVTZ ${ }^{38-}$ ${ }^{39}$.

Reaction rate coefficients, k, are calculated using multi-conformer transition state theory (MC-TST) ${ }^{24,40-42}$:

$$
k=\kappa \frac{k_{B} T}{h} \cdot \frac{\sum_{i}^{\text {All TS conf. }} \exp \left(-\frac{\Delta E_{i}}{k_{B} T}\right) Q_{T S_{i}}}{\sum_{j}^{\text {All Rconf. }} \exp \left(-\frac{\Delta E_{j}}{k_{B} T}\right) Q_{T S_{j}}} \cdot \exp \left(-\frac{E_{T S}-E_{R}}{k_{B} T}\right) \text { Eqn. S(12) }
$$

where k_{B} is the Boltzmann constant, T is the absolute temperature, h is Planck's constant, the sums are over all transition state and reactant conformers, respectively and sum their partition functions (Q) Boltzmann weighted by their energy calculated relative to the lowest-energy conformer. The final term has the energy difference between the lowest-energy TS and reactant conformers, the barrier height. The barrier heights are calculated using F12 electronic energies with ω B97X-D/aug-cc-pVTZ ZPVE and ω B97X-D/aug-cc-pVTZ is used for the partition functions and relative energy between conformers. The partition functions are calculated using the harmonic oscillator rigid rotor approximation. All reaction rate coefficients are calculated at 298.15 K. Rate coefficients calculated at this level are given in Table S 6 and Table S 7.

Rate coefficients calculated similarly, but using ω B97X-D/aug-cc-pVTZ for all values including the electronic energy are given in Table S 8 and Table S 9. The rate coefficients of three unimolecular channels (i.e., 1,5 H-shift, 1,6 H-shift, and 6-membered endoperoxide formation) of A1 using ω B97X-D/aug-cc-pVTZ were reported in Berndt et al. ${ }^{43}$

As an approach for eliminating slow reactions, MC-TST reaction rate coefficients were calculated following the B3LYP/6-31+G(d) calculations for all reactions (Table S 10 and Table S 11). For these reactions, tunneling was estimated from the barrier height (energy difference between lowest-energy reactant and TS conformers) and assuming a thermoneutral reaction (i.e. a symmetrical barrier) ${ }^{44}$. The Eckart tunneling coefficient is thus calculated with same forward and reverse barriers, which are equal to the reaction barrier and the imaginary frequency of the lowestenergy ($\mathrm{E}_{\mathrm{e}}+\mathrm{ZPVE}$) conformer at the B3LYP/6-31+G(d) level. Compared to the more formally correct approach of using the IRC end-points for the tunneling barriers, this is expected to represent an upper limit for the Eckart tunneling correction (with a given imaginary frequency) ${ }^{24}$. Firstly, the reaction barrier is the upper limit for the forward Eckart barrier and likely the IRC connects to a higher-energy reactant conformer ${ }^{24}$. Secondly, the peroxy radical H-shift reactions are generally energetically uphill, which means that the reverse IRC barrier is usually lower than the forward. For the unimolecular reactions of B5 (the ring-opened β-pinene hydroxy peroxy radical), we show that the Eckart tunneling coefficients calculated using this approach do indeed represent upper limits for the B3LYP Eckart tunneling coefficient, see Table S 12. The use of upper limit tunneling coefficients for the MC-TST B3LYP reaction rate coefficients allows to more confidently eliminate slow reactions at this level. Reactions with rate coefficients below $5 \cdot 10^{-3} \mathrm{~s}^{-1}$ were not
considered at a higher level. However, for a few reactions with rate coefficient below this value, higher-level reaction rate coefficients were calculated to validate the value of the cut-off.

S5.3 Calculations on the ring-opening fraction of hydroxy alkyl radicals

Conformational sampling and subsequent computational steps were done as described in the approach by Møller et al. (see above) ${ }^{24}$ using Gaussian 09 for the DFT calculations. For the RRKM simulations, the electronic energy of the species important for the simulation (the free reactants, the hydroxy alkyl radicals and the ring-opening TS) are calculated using RO-CCSD(T)-F12a/VDZ-F12// ω B97X-D/aug-cc-pVTZ (abbreviated F12) while all other values are calculated using ω B97X-D/aug-cc-pVTZ. For reference, the canonical (for the species without excess energy) MC-TST reaction rate coefficients for the ring-opening reactions are also calculated using the approach described above (but these values are not used in the simulation). The canonical MCTST reaction rate coefficients do not include a tunneling correction due to the large mass being transferred (tunneling coefficient estimated to be less than a factor of 2). The Eckart tunneling correction is used in the simulations.

RRKM modelling is done using the Master Equation Solver for Multi-Energy well Reactions (MESMER) for the lowest-energy conformers (MESMER uses only a single conformer) ${ }^{45}$. For the simulations, the following parameters are used:

- $\mathrm{k}(\alpha$-pinene $+\mathrm{OH}, 300 \mathrm{~K})=6.08 \cdot 10^{-11} \mathrm{~cm}^{-3}$ molecule ${ }^{-1} \mathrm{~s}^{-1},{ }^{46}$
- $\mathrm{k}(\beta$-pinene $+\mathrm{OH}, 300 \mathrm{~K})=7.72 \cdot 10^{-11} \mathrm{~cm}^{-3}$ molecule ${ }^{-1} \mathrm{~s}^{-1},{ }^{46}$
- $[\mathrm{OH}]=1 \cdot 10^{6}$ molecules cm^{-3} corresponding to the estimated global average value.
- $\mathrm{k}\left(\mathrm{R} \cdot+\mathrm{O}_{2}\right)=14 \cdot 10^{-12} \mathrm{~cm}^{-3}$ molecule $\mathrm{e}^{-1} \mathrm{~s}^{-147}$. This is the value for cyclohexanyl $+\mathrm{O}_{2}$ and corresponds to a pseudo-first order rate coefficient of $7.2 \cdot 10^{7} \mathrm{~s}^{-1}$. The exact rate of this addition is not important for the simulation, as long as it is significantly faster than the rate of ring-opening for the thermalized radicals $\left(10^{2}-10^{3} \mathrm{~s}^{-1}\right.$, see Table S 15) and slower than the excess energy reaction $\left(\sim 10^{10} \mathrm{~s}^{-1}\right)^{48}$.
- Exponential energy decay with energy transfer per collision $\left(\Delta \mathrm{E}_{\mathrm{down}}\right)=225 \mathrm{~cm}^{-1}$. This value is based on values for similar simulations with N_{2} as the bath gas ${ }^{49-50}$.
- Lennard-Jones parameters for the pinene-derived species: $\sigma=6.5 \AA, \varepsilon / k_{b}=600{ }^{50}$.
- Bath gas $=\mathrm{N}_{2}\left(\sigma=3.919 \AA \AA, \varepsilon / k_{\mathrm{b}}=91.85\right)^{51}$
- $\mathrm{P}=760$ Torr, $\mathrm{T}=298.15 \mathrm{~K}$
- Grain size $=100 \mathrm{~cm}^{-1}$ and energy grain span above the highest stationary point $=50 \mathrm{k}_{\mathrm{B}} \mathrm{T}$.

The system being modelled is illustrated for β-pinene in Figure S 14 for exemplification. As can be seen, the hydroxy alkyl radical is formed with almost $30 \mathrm{kcal} / \mathrm{mol}$ excess energy and the barrier for ring-opening is about $13 \mathrm{kcal} / \mathrm{mol}$. As shown in Table S 15 , the energetics are very similar for all three systems. As expected from the comparable energetics of the three systems, the calculated amount modelled to ring open is very similar for all three at around 30-50 \% (Table S $15)$. The difference between α-pinene and β-pinene is within the uncertainty of the modelling. Very similar results are obtained when all values are calculated using ω B97X-D/aug-cc-pVTZ (Table S 16), but with slightly higher barriers leading to slightly lower yields of the ring-opened product.

To assess the sensitivity of the model, the analysis was redone for the systems where the barrier for ring-opening had either been decreased or increased by $1 \mathrm{kcal} / \mathrm{mol}$. As shown in Table S 17, this roughly changes the fraction ring-opening by a factor of two in either direction. We also test the sensitivity of the model towards the energy being transferred per collision ($\Delta \mathrm{E}_{\mathrm{down}}$), as shown in Table S 18. The results in the table confirm that the ring-opening is driven by the excess energy in the hydroxy alkyl radical, as decreasing the energy transfer per collision increases the yield of ring-opened product and vice versa.

S4. Kinetic box model to simulate the relationship between the (ring-opened HN):(ringretained HNs) ratio and RO_{2} lifetimes

To obtain the distribution of HN isomers under certain $\tau_{\text {bimolecular, }}$ we solve the time-dependent set of ordinary differential equations (ODEs) for the following systems, which include the oxidation reactions of α-pinene depicted in Scheme 1.

$$
\begin{aligned}
& \frac{\mathrm{d}[\alpha \text {-pinene }]}{\mathrm{dt}}=-\mathrm{k}_{\alpha p+\mathrm{OH}} \times[\alpha \text {-pinene }] \times[\mathrm{OH}] \\
& \frac{\mathrm{d}\left[2-\mathrm{OH}, 3-\mathrm{RO}_{2}\right]}{\mathrm{dt}}=\mathrm{Y}_{2-\mathrm{OH}, 3-\mathrm{RO}}^{2} \times \mathrm{k}_{\text {ap+OH }}[\alpha-\text { pinene }] \times[\mathrm{OH}]-\mathrm{k}_{\mathrm{RO}_{2}+\mathrm{NO}}\left[2-\mathrm{OH}, 3-\mathrm{RO}_{2}\right] \times[\mathrm{NO}] \\
& \frac{\mathrm{d}\left[3-\mathrm{OH}, 2-\mathrm{RO}_{2}\right]}{\mathrm{dt}}=\mathrm{Y}_{3-\mathrm{OH}, 2-\mathrm{RO}} \times \mathrm{k}_{\text {ap }+\mathrm{OH}}[\alpha-\text { pinene }] \times[\mathrm{OH}]-\mathrm{k}_{\mathrm{RO}_{2}+\mathrm{NO}}\left[3-\mathrm{OH}, 2-\mathrm{RO}_{2}\right] \times[\mathrm{NO}] \\
& \frac{\mathrm{d}\left[3-\mathrm{OH}, 8-\mathrm{RO}_{2}\right]}{\mathrm{dt}}=\mathrm{Y}_{3-\mathrm{OH}, 8-\mathrm{RO}}^{2} \times 2 \mathrm{k}_{\text {ap }+\mathrm{OH}}[\alpha-\text { pinene }] \times[\mathrm{OH}]-\mathrm{k}_{\mathrm{RO}_{2}+\mathrm{NN}}\left[3-\mathrm{OH}, 8-\mathrm{RO}_{2}\right] \times[\mathrm{NO}]-\mathrm{k}_{\mathrm{urimolecular}}\left[3-\mathrm{OH}, 8-\mathrm{RO}_{2}\right] \\
& \left.\frac{\mathrm{d}\left[2-\mathrm{OH}, 3-\mathrm{ONO}_{2}\right]}{\mathrm{dt}}=\mathrm{BR}_{2-\mathrm{OH}, 3-\mathrm{ONO}}^{2} \right\rvert\, 2 \mathrm{k}_{\mathrm{RO}}^{2}+\mathrm{NO}\left[2-\mathrm{OH}, 3-\mathrm{RO}_{2}\right] \times[\mathrm{NO}] \\
& \frac{\mathrm{d}\left[3-\mathrm{OH}, 2-\mathrm{ONO}_{2}\right]}{\mathrm{dt}}=\mathrm{BR}_{3-\mathrm{OH}, 2-\mathrm{ON}}^{2} 2{ }_{2} \times \mathrm{k}_{\mathrm{RO}}^{2}+\mathrm{NO}\left[3-\mathrm{OH}, 2-\mathrm{RO}_{2}\right] \times[\mathrm{NO}] \\
& \frac{\mathrm{d}\left[3-\mathrm{OH}, 8-\mathrm{ONO}_{2}\right]}{\mathrm{dt}}=\mathrm{BR}_{3 \text {-OH },-\mathrm{ONO}}^{2} \times \mathrm{k}_{\mathrm{RO} 2}+\mathrm{NO}\left[3-\mathrm{OH}, 8-\mathrm{RO}_{2}\right] \times[\mathrm{NO}]
\end{aligned}
$$

The symbols have the same meaning as those in section S2. To achieve the same OH exposure as experiments, we assume a constant OH concentration $\left(2 \times 10^{6} \mathrm{molec} \mathrm{cm}^{-3}\right)$ and interval of integration (1000 s). Our procedure to obtain the optimized kunimolecular is the following. First, by solving the set of ODEs under fixed NO concentration and kunimolecular, we obtain the (ring-opened HN):(ring-retained HNs) ratio at fixed $\tau_{\text {bimolecular }}$ and $\mathrm{k}_{\text {unimolecular. Second, under a fixed kunimolecular }}$ but varying NO concentration, we obtain the relationship between (ring-opened HN):(ringretained HNs) ratio and $\tau_{\text {bimolecular }}$. Third, we vary kunimolecular to obtain different relationships between (ring-opened HN):(ring-retained HNs) ratio and $\tau_{\text {bimolecular. Finally, we compare }}$ the simulated relationships under varying kunimolecular with measurements to determine the optimized kunimolecular. We determine the upper and lower bounds of the kunimolecular in a way that 80% of the experimental data points are placed on the same side of the simulated curve. The upper and lower bounds are used to calculate the average and the uncertainty range of kunimolecular assuming symmetric uncertainties.

S5. Yields of $\boldsymbol{\alpha}$-pinene and $\boldsymbol{\beta}$-pinene hydroxy nitrates

We estimate the instrumental sensitivity $\left(c_{x}\right)$ towards HNs based on the ion-molecular collision rate coefficients $\left(k_{x}\right)$. The rate coefficients are calculated from the dipole moment (μ) and polarizability (α) using the empirical approach developed by Su et al. ${ }^{52}$. The μ and α for all $10 \alpha-$ pinene HN isomers and 5β-pinene HNs are calculated using Density Function Theory (DFT) B3LYP/cc-pVTZ (Section S3.1) and are listed in Table S 2.

We relate the k_{x} to c_{x} by using glycoaldehyde as a calibration reference
$c_{x}=\frac{k_{x}}{k_{\text {glycoaldehyde }}} \times c_{\text {glycoaldehyde }}$
where kglyc aldehyde is $2.0 \times 10^{-9} \mathrm{~cm}^{3}$ molec $^{-1} \mathrm{~s}^{-1}$ using the empirical approach by Su et al. ${ }^{52}$ and Cglycoaldehyde is experimentally determined to be $1.5 \times 10^{-4} \mathrm{ncts}_{\mathrm{pptv}}{ }^{-1}$ where ncts (normalized counts) is the observed ion count rate divided by the sum of the count rates for ${ }^{13} \mathrm{CF}_{3} \mathrm{O}^{-}$and ${ }^{13} \mathrm{CF}_{3} \mathrm{O}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$.

The signal of an individual HN isomer is calculated by multiplying the total signal of all HNs during direct sampling by the corresponding GC fractional abundances. Isomer-specific sensitivity is applied to convert the signal to mixing ratio. The molar yield of a HN isomer is the change in HN concentration over the consumed parent hydrocarbon. The overall yield of all HN isomers is the summation over all individual isomers. We quantify the overall yields of HN to be $3.3 \pm 1.5 \%$ and $6.4 \pm 2.1 \%$ for α-pinene and β-pinene, respectively. The mean value is obtained from the average of five experiments with initial NO concentration above 1000 ppbv . The uncertainty is calculated by propagating the standard deviations of HN yields from five experiments (15% for α-pinene and 6% for β-pinene), the instrumental sensitivity uncertainty ($\sim 30 \%$), initial hydrocarbon concentration uncertainty ($\sim 10 \%$), secondary loss ($\sim 5 \%$), and vapor wall loss ($\sim 2 \%$). The secondary loss of HN by reaction with OH^{53} is negligible ($<5 \%$) because of the low OH exposure in the experiments (roughly 2×10^{9} and 1×10^{9} molecules cm^{-3} s for α-pinene and β-pinene experiments, respectively). The measured wall loss rate constant for HN is $1 \times 10^{-5} \mathrm{~s}^{-1}$. In 30 min (i.e., the oxidation time in experiments to quantify the hydroxy nitrate yield), 2% of gas-phase hydroxy nitrate is lost to wall. To evaluate the sample loss in the 2 m Teflon sampling line, we increased the sampling flow rate from 1 LPM to 2 LPM. No discernable change in hydroxy nitrate concentration was observed, suggesting negligible loss in sampling line.

We note that the overall yield reported here only accounts for the first generation gas phase HNs. Considering that less than 10 ppbv hydrocarbon is oxidized, the fraction of HNs in the particle phase is expected to be small. According to Eddingsaas et al. ${ }^{54}$ who used similar initial α pinene concentration as our study, the SOA yield is $\sim 5 \%$ when OH exposure is $\sim 2 \times 10^{9} \mathrm{molec} \mathrm{cm}^{-}$ ${ }^{3} \mathrm{~s}$. Thus, roughly $3 \mu \mathrm{~g} \mathrm{~m}{ }^{-3} \mathrm{SOA}$ is produced from the oxidation of $10 \mathrm{ppbv} \alpha$-pinene. Bean et al. reported that when OA concentration is below $40 \mu \mathrm{~g} \mathrm{~m}^{-3}$, only $5-10 \%$ of α-pinene organic nitrates are expected to partition to the particle phase ${ }^{55}$. Therefore, the effect of gas/particle partitioning on our measured HNs yield is within 10%. To further test the effect of gas/particle partitioning on the gas phase HN yields, we perform experiments with $\sim 300 \mathrm{ppbv}$ initial VOC and oxidize $\sim 30 \mathrm{ppbv}$ VOC to keep the OH exposure the same as low VOC experiments. The HNs yields are not statistically significant between high and low VOC experiments ($3.2 \pm 1.5 \%$ when $\Delta \alpha$-pinene $<$ 10 ppbv vs. $3.4 \pm 1.5 \%$ when $\Delta \alpha$-pinene $=\sim 30 \mathrm{ppbv} ; 6.3 \pm 2.1 \%$ when $\Delta \beta$-pinene $<10 \mathrm{ppbv}$ vs. $6.9 \pm 2.3 \%$ when $\Delta \beta$-pinene $=\sim 30 \mathrm{ppbv}$), suggesting a minor effect of gas/particle partitioning on HNs yield. From the high vs. low VOC experiments, we also find that the gas/particle partitioning has small effect on the distribution of HN isomers (Figure S 15).

In α-pinene short $\tau_{\text {bimolecular experiments, we observe CIMS signals at a number of even }}$ masses (Table S 20). If we assume that the compounds appearing at even mass are nitrogencontaining organic compounds and assume that these compounds have the same sensitivity as the average of all α-pinene hydroxy nitrate isomers, we estimate an overall yield of organic nitrates to be 9%. This roughly estimated yield is half of the total nitrates yield quantified by FT-IR in an earlier study $(18 \% \pm 9 \%)^{56}$. However, we note that the alkyl nitrates produced from OH abstraction channel are detected by FTIR, but not by $\mathrm{CF}_{3} \mathrm{O}^{-}$CIMS, which partly contributes to the discrepancy. The uncertainties in instrumental sensitivity also can largely influence the comparison. Following the same analysis as α-pinene, the overall yield of organic nitrates is estimated to be 11% for β pinene.

S6. Discussion of branching ratios and associated uncertainties in α-pinene oxidation.

The formation pathway of α-pinene HNs and co-products is shown in Scheme S 7. The branching ratio for each reaction step is discussed below. BR in this study is defined as the ratio of the rate constant for a particular product of a reaction to the rate constant for the total set of possible products ${ }^{57}$.

1) $\quad \mathrm{BR}_{\mathrm{OH}}$ add represents the fraction of α-pinene +OH that proceeds via addition to the double bond. Early theoretical studies estimate that $\mathrm{BRoH}_{\text {_add }}$ is 90% based on structure-activity relationships ${ }^{58-59}$.
2) BRoH_less_sub represents the fraction of OH adding onto the less-substituted olefinic carbon. BRoh_less_sub is equivalent to $\mathrm{BR}_{\text {add_C3 }}$ in Scheme S 7 and $\mathrm{BR}_{\text {add_C1 }}$ in Scheme S 8. These ratios have not been experimentally constrained. The OH addition branching ratio for 2-methyl 2-butene, which shares a similar substitutions around the C-C double bond with α-pinene, though does not have the rigid constraints of a ring structure, is $69 \%: 31 \%$ as experimentally constrained in Teng et al. ${ }^{2}$ However, Peeters et al. suggested that the bicyclic ring structure may affect the substitution effect and hence conjectured the branching ratio as 50% : 50%.
3) BRring-open represents the ring-opening fraction of activated alkyl radicals. BRring-open has been extensively discussed in the main text. In brief, Peeters et al. ${ }^{58}$ and our theoretical calculations (F12 level) suggest $\mathrm{BR}_{\text {ring-open }}$ to be 50% and 32%, respectively for $3-\mathrm{OH}, 2-\mathrm{R} \cdot$ from α-pinene + OH .
4) $\quad \mathrm{BR}_{\mathrm{RONO} 2}$ represents the nitrate branching ratio of RO_{2} reaction with NO to form RONO_{2} $\mathrm{BR}_{\mathrm{RONO} 2}$ is shown as "BR1-3" in Scheme S 7). An estimate of $\mathrm{BR}_{\mathrm{RONO} 2}$ for each RO_{2} isomer can be calculated from the measured yield of corresponding HN isomer and the branching ratios for each step along HN formation pathway. Using 50% as the $\mathrm{BR}_{\text {add_C2 }}$ (from Peeters et al. ${ }^{58}$) and 32% as the $\mathrm{BR}_{\text {ring-open }}$ (from our theoretical calculation), we calculate that the $\mathrm{BR}_{\mathrm{RONO}}$ is $3.1 \%, 0.7 \%$, and 10.8% for α-pinene $2-\mathrm{OH}, 3-\mathrm{RO}_{2}, 3-\mathrm{OH}, 2-\mathrm{RO}_{2}$, and 3-OH, $8-\mathrm{RO}_{2}$, respectively. Using the same approach, we estimate that the $\mathrm{BR}_{\mathrm{RONO}}$ is $15.9 \%, 10.2 \%$, and 1.7% for β-pinene $2-\mathrm{OH}, 1-\mathrm{RO}_{2}, 1$ $\mathrm{OH}, 2-\mathrm{RO}_{2}$, and $1-\mathrm{OH}, 8-\mathrm{RO}_{2}$, respectively. The widely ranging $\mathrm{BR}_{\mathrm{RONO}}$, for RO_{2} with similar structures is surprising and may indicate errors in the calculated branching ratios. For example, BRRONO2 of α-pinene ring-opened peroxy radical, 3-OH, $8-\mathrm{RO}_{2}(10.8 \%)$, is six times larger than that of β-pinene ring-opened peroxy radical, $1-\mathrm{OH}, 8-\mathrm{RO}_{2}(1.7 \%)$.

Considering the large uncertainties in the above branching ratios, we suggest an alternative constraint on them based on measured yield of hydroxy nitrate isomers. We assume that the ringopened tertiary RO_{2} of both α-pinene and β-pinene have the same $\mathrm{BR}_{\text {RONO2 }}$ (denoted as " $\mathrm{BR}_{\mathrm{RONO} 2 \text {,ring-open }}$). This assumption is reasonable as the ring-opened RO_{2} of both terpenes share very similar structure (i.e., tertiary RO_{2} in the $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OO}$ group). Further, we assume that all the β-hydroxy RO_{2} have the same $\mathrm{BR}_{\mathrm{RONO}}$ (denoted as " $\mathrm{BR}_{\mathrm{RONO} 2, \beta-\mathrm{OH}}$ "), following study by Teng et
al. ${ }^{6}$ Based on these two assumptions, we can express the yields of six hydroxy nitrate isomers (α pinene and β-pinene combined) by propagating the branching ratio of each step as shown below,
$\mathrm{Y}_{\alpha \text {-pinene 3-OH,8-ONO2 }}=\mathrm{BR}_{\mathrm{OH} _ \text {_add }} \times \mathrm{BR}_{\text {add_C3 }} \times \mathrm{BR}_{\alpha \text {-pinene,ring-open }} \times \mathrm{BR}_{\text {RONO2,ring-open }}$
$\mathrm{Y}_{\alpha \text {-pinene }}$ 3-OH,2-ONO2 $=\mathrm{BR}_{\mathrm{OH} _ \text {_add }} \times \mathrm{BR}_{\text {add_C3 }} \times\left(1-\mathrm{BR}_{\alpha \text {-pinene, } \text { ring-open }}\right) \times \mathrm{BR}_{\text {RONO2, } \beta \text {-OH }}$
$\mathrm{Y}_{\alpha \text {-pinene 2-OH,3-ONO2 }}=\mathrm{BROH}_{\text {_add }} \times\left(1-\mathrm{BR}_{\text {add_C3 }}\right) \times \mathrm{BR}_{\text {RONO2, } \beta \text {-OH }}$
$\mathrm{Y}_{\beta \text {-pinene } 1-\mathrm{OH}, 8-\mathrm{ONO} 2}=\mathrm{BROH}_{-}$add $\times \mathrm{BR}_{\text {add_C1 }} \times \mathrm{BR}_{\beta \text {-pinene,ring-open }} \times \mathrm{BR}_{\text {RONO2,ring-open }}$
$\mathrm{Y}_{\beta \text {-pinene } 1-\mathrm{OH}, 2-\mathrm{ONO} 2}=$ BR $_{\mathrm{OH} _ \text {_add }} \times \mathrm{BR}_{\text {add_C1 }} \times\left(1-\mathrm{BR}_{\beta \text {-pinene,ring-open }}\right) \times \mathrm{BR}_{\text {RONO2, } \beta \text {-OH }}$
$\mathrm{Y}_{\beta \text {-pinene } 2 \text {-OH,1-ONO2 }}=$ BRoh_add $\times\left(1-\mathrm{BR}_{\text {add_C1 }}\right) \times$ BR $_{\text {RONO2, } \beta \text {-OH }}$
BRoh_add is 0.9 as discussed above. $\mathrm{BR}_{\text {add_C3 }}$ and $\mathrm{BR}_{\text {add_C1 }}$ represent the branching ratio of OH adding onto C 3 and C 1 in α-pinene and β-pinene, respectively. The yield of each hydroxy nitrate isomer is measured in this study. $\mathrm{BR}_{\text {add_C3 }}, \mathrm{BR}_{\text {add_C1 }}, \mathrm{BR}_{\alpha \text {-pinene,ring-open, }}, \mathrm{BR}_{\beta \text {-pinene,ring-open, }}, \mathrm{BR}_{\text {RONO2, } \beta-}$ oh, and BRRONO2,ring-open are unknowns. By solving the system of equations (six equations and six unknowns), we find that
$\mathrm{BR}_{\text {add_C3 }}=0.83$,
$\mathrm{BR}_{\text {add_Cl }}=0.88$,
$\mathrm{BR}_{\alpha \text {-pinene,ring-open }}=0.97$,
$B R_{\beta \text {-pinene,ring-open }}=0.34$,
$\mathrm{BR}_{\mathrm{RONO} 2, \beta-\mathrm{OH}}=0.092$,
$B R_{R O N O 2, \text { ring-open }}=0.022$.
To evaluate how the assumption on $\mathrm{BR}_{\mathrm{RONO}}$ affects the $\mathrm{BR}_{\text {ring-open, }}$ we extend the approach by implementing different constraints on BRRONO2. For example, we assume that the ratio of BRRONO2 for tertiary, secondary, and primary β-hydroxy RO_{2} is 1.25 : $1: 0.75$ as suggested by Wennberg et al. ${ }^{60}$. Now, the system contains eight equations and eight unknowns, as shown below.
$\mathrm{Y}_{\alpha \text {-pinene } 3 \text {-OH, } 8 \text {-ONO2 }}=\mathrm{BR}_{\mathrm{OH} _ \text {_add }} \times \mathrm{BR}_{\text {add_C3 }} \times \mathrm{BR}_{\alpha \text {-pinene,ring-open }} \times \mathrm{BR}_{\text {RONO2,ring-open }}$
$\mathrm{Y}_{\alpha \text {-pinene }}$ 3-OH,2-ONO2 $=\mathrm{BR}_{\mathrm{OH} _ \text {add }} \times \mathrm{BR}_{\text {add_C3 }} \times\left(1-\mathrm{BR}_{\alpha-\text { pinene, }}\right.$ ring-open $) \times \mathrm{BR}_{\text {RONO2, } \beta \text {-OH,3rd }}$
$\mathrm{Y}_{\alpha \text {-pinene } 2-\mathrm{OH}, 3-\mathrm{ONO} 2}=\mathrm{BROH}_{\text {_add }} \times\left(1-\mathrm{BR}_{\text {add_C3 }}\right) \times \mathrm{BRRONO}_{2, \beta-\mathrm{OH}, 2 \text { nd }}$
$\mathrm{Y}_{\beta \text {-pinene } 1-\mathrm{OH}, 8-\mathrm{ONO} 2}=\mathrm{BR}_{\mathrm{OH} _ \text {_add }} \times \mathrm{BR}_{\text {add_C1 }} \times \mathrm{BR}_{\beta \text {-pinene,ring-open }} \times \mathrm{BR}_{\text {RONO2,ring-open }}$
$\mathrm{Y}_{\beta \text {-pinene }} 1-\mathrm{OH}, 2-\mathrm{ONO} 2=$ BRoH_add $\times \mathrm{BR}_{\text {add_C1 }} \times\left(1-\mathrm{BR}_{\beta \text {-pinene,ring-open }}\right) \times \mathrm{BR}_{\text {RONO2 }, \beta-\mathrm{OH}, 3 \mathrm{rd}}$
$\mathrm{Y}_{\beta \text {-pinene }} 2$-OH,1-ONO2 $=$ BROH_add $\times\left(1-\mathrm{BR}_{\text {add_C1 }}\right) \times \mathrm{BR}_{\text {RONO2, } \beta-\mathrm{OH}, 1 \text { st }}$
$\mathrm{BR}_{\text {RONO2, } \beta \text {-OH, } 1 \mathrm{st}}=0.75 \times \mathrm{BR}_{\mathrm{RONO} 2, \beta-\mathrm{OH}, 2 \mathrm{nd}}$
$\mathrm{BR}_{\mathrm{RONO}}, \mathrm{\beta}$-OH,3rd $=1.25 \times \mathrm{BR}_{\mathrm{RONO}}$, β-OH,2nd
where $\mathrm{BR}_{\mathrm{RONO} 2, \beta-\mathrm{OH}, 1 \mathrm{st},} \mathrm{BR}_{\mathrm{RONO} 2, \beta-\mathrm{OH}, 2 \mathrm{nd},} \mathrm{BR}_{\mathrm{RONO} 2, \beta-\mathrm{OH}, 3 \mathrm{rd}}$ represents the $\mathrm{BR}_{\mathrm{RONO}}$ for primary, secondary, and tertiary β-hydroxy RO_{2}, respectively. Other symbols have the same meaning as in previous equations.

By solving the new system of equations, we find that
BRadd_C3 $=0.81$,
$\mathrm{BR}_{\text {add_Cl }}=0.82$,
$\mathrm{BR}_{\alpha \text {-pinene,ring-open }}=0.97$,
$B R_{\beta \text {-pinene,ring-open }}=0.36$,
$\mathrm{BR}_{\mathrm{RONO} 2, \text { ring-open }}=0.023$,
$\mathrm{BR}_{\mathrm{RONO} 2, \beta-\mathrm{OH}, 1 \mathrm{st}}=0.061$,
BRRONO2 $, \beta-\mathrm{OH}, 2 \mathrm{nd}=0.082$,
$\mathrm{BR}_{\text {RONO2 }, \beta \text {-OH,3rd }}=0.10$.
Different assumptions have minor effect on $\mathrm{BR}_{\text {ring-open. }}$. More importantly, the $\mathrm{BR}_{\alpha-\text {-pinene,ring- }}$ open and $\mathrm{BR}_{\beta \text {-pinene,ring-open }}$ are substantially different from the theoretical calculations. This has been discussed in the main text.

From the above calculation, we find that $\mathrm{BR}_{\mathrm{RONO} 2, \beta-\mathrm{OH}, 3 \mathrm{rd}}$ is about four times larger than BR $_{\text {RONO2,ring-open. This result }}$ is consistent with experimentally observed products distribution in β pinene system. From Figure 4b, it can be inferred that

$$
\frac{\text { yield of endoperoxide hydroxy nitrate }\left(C_{10} H_{17} \mathrm{NO}_{6}\right) \text { at } \tau_{\text {bimolecular }}=10 \mathrm{~s}}{\text { yield of ring - opened hydroxy nitrate }\left(C_{10} H_{17} \mathrm{NO}_{4}\right) \text { at } \tau_{\text {bimolecular }}=0.001 \mathrm{~s}}=2
$$

At $\tau_{\text {bimolecular }}=10 \mathrm{~s}$, unimolecular reaction dominates the fate of β-pinene ring-opened RO_{2}, roughly 70% of which undergoes endo-cyclization, based on our theoretical calculations (Scheme 2C). This suggests that

$$
\frac{\text { yield of endoperoxide hydroxy } R O_{2}\left(C_{10} H_{17} O_{5}\right) \text { at } \tau_{\text {bimolecular }}=10 \mathrm{~s}}{\text { yield of ring - opened } \mathrm{RO} O_{2}\left(C_{10} H_{17} O_{3}\right) \text { at } \tau_{\text {bimolecular }}=0.001 \mathrm{~s}}=0.7
$$

At $\tau_{\text {bimolecular }}=10 \mathrm{~s}$, roughly 56% of endoperoxide hydroxy RO_{2} reacts with NO , based on MCM simulation. At $\tau_{\text {bimolecular }}=0.001 \mathrm{~s}$, nearly 100% of ring-opened RO_{2} is expected to react with NO . Therefore,

$$
\frac{\text { fraction of } C_{10} H_{17} O_{5}+\mathrm{NO} \text { at } \tau_{\text {bimolecular }}=10 \mathrm{~s}}{\text { fraction of } C_{10} H_{17} O_{3}+\mathrm{NO} \text { at } \tau_{\text {bimolecular }}=0.001 \mathrm{~s}}=0.56
$$

Combining the above three ratios, we estimate that

$$
\frac{B R_{R O N O 2} \text { of endoperoxide hydroxy } \mathrm{RO}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{5}\right)}{B R_{R O N O 2} \text { hydroxy } \mathrm{RO}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{3}\right)}=\frac{2}{0.7 \times 0.56}=5.1
$$

As endoperoxide hydroxy RO_{2} and ring-retained hydroxy RO_{2} share similar structure (i.e., β hydroxy RO_{2} with two rings), we expect they have similar $\mathrm{BR}_{\text {RONO2 }}$. Thus, we infer $\mathrm{BR}_{\text {RONO2, } \beta-}$ Oh,3rd/BRRONO2,ring-open to be 5.1 , which is close to the ratio, 4.3 , found by solving the system of equations.
5) $\quad \mathrm{BR}_{\text {acetone }}$ represents the branching ratio to form acetone. This branching ratio is calculated to be nearly zero as an earlier theoretical study suggested that the endo-cyclization has an energy barrier about $3.6 \mathrm{kcal} \mathrm{mol}^{-1}$ lower than that of acetone elimination ${ }^{61}$.
6) The β-hydroxy alkoxy radicals (R 2 and R 3 in Scheme S 7) can undergo either H-shift or ring-opening. Peeters et al. assumed that 87.5% of the R2 and R3 would undergo ring-opening and subsequently produce pinonaldehyde. Our MC-TST calculations, however, suggest that H -shift of some R2 isomers can be competitive with its ring-opening reaction. F12 level of theory calculates that for the A3 and A9 (in Scheme S 2) derived alkoxy radical, the $1,5 \mathrm{H}$-shift from the methyl group (i.e., C 9 points towards the ring and towards the alkoxy radical) to the alkoxy group proceeds at a rate of $1.9 \times 10^{8} \mathrm{~s}^{-1}$ (Table S 19). The H-shift channel is estimated to account for 35% of the fate of these alkoxy radicals. We note that the H -shift reaction is possible only for the isomers which have the alkoxy radical on the same side of the ring as the two methyl groups on the fourmembered ring (i.e., A3, A5, A7, and A9 derived alkoxy radical). The H-shift from CH_{2} group to
alkoxy radical may also be important, but not examined yet. Therefore, the branching ratios of R2 and R3 warrant future investigation.
7) The α-hydroxyalkylperoxy radical (R5 and R6 in Scheme S7) can undergo either thermal decomposition to produce pinonaldehyde or reaction with NO. Peeters et al. estimated thermal decomposition rate to be $\sim 2000 \mathrm{~s}^{-1}$ at room temperature, making this reaction the dominant fate of α-hydroxyalkylperoxy in the atmosphere. However, Peeters et al. argued that in some laboratory studies where NO concentrations are of the order of $10-100 \mathrm{ppm}$, a significant fraction of α hydroxyalkylperoxy would react with NO and lower the pinonaldehyde yield. The calculated pinonaldehyde yield is 35.7% under "laboratory conditions" (where 60% of α-hydroxyalkylperoxy undergoes thermal decomposition) and 59.5% under "ambient conditions" (where 100% of α hydroxyalkylperoxy undergoes thermal decomposition). However, many laboratory studies have been performed under conditions close to "ambient conditions" and yet report much lower pinonaldehyde yields than the calculation. For example, Aschmann et al. quantified pinonaldehyde yield where initial NO concentration was $200 \mathrm{ppbv}^{62}$. Using $9.15 \times 10^{-12} \mathrm{~s}^{-1}$ as the $\mathrm{RO}_{2}+\mathrm{NO}$ reaction rate coefficient (from MCM), roughly 98\% of α-hydroxyalkylperoxy in the Aschmann et al. study undergoes thermal decomposition, a condition similar to "ambient condition" reported in Peeters et al. However, the measured yield is $28 \pm 5 \%$, roughly a factor of two lower than that calculated in Peeters et al. Similarly, Wisthaler et al. measured the pinonaldehyde yield to be $34 \pm 9 \%$ when initial NO is in the range of $1-2 \mathrm{ppm}$ (i.e., $\sim 90 \%$ of α-hydroxyalkylperoxy undergoes thermal decomposition $)^{63}$. Therefore, the pinionaldehyde yield calculated in Peeters et al. is likely overestimated.

Scheme S 1. The simplified oxidation mechanism of β-pinene + OH. Each structural isomer of RO_{2} and hydroxy nitrate has multiple diastereoisomers, which are shown in Scheme S 2. The $\mathrm{RO}+\mathrm{NO}_{2}$ produced from $\mathrm{RO}_{2}+\mathrm{NO}$ reactions are not included in the scheme for clarity.

Scheme S 2. The formation of (a) ten isomers of (+) α-pinene hydroxyl nitrates (AN1-AN10) and (b) five isomers of $(+) \beta$-pinene hydroxyl nitrates (BN1-BN5). (-) β-pinene is used in experiments, but $(+) \beta$-pinene is used in computational calculations. The $\mathrm{RO}+\mathrm{NO}_{2}$ produced from $\mathrm{RO}_{2}+\mathrm{NO}$ reactions are not included in the scheme.

Scheme S 3. The reaction of α-pinene and β-pinene with NO_{3} radical and subsequently with another RO_{2}.

Scheme S 4. Speculations on the potential reactions of three α-pinene second-generation RO_{2} (shown in red boxes). There are a number of potential reactions pathways not included in the scheme.

Scheme S 5. Speculations on the reactions of α-pinene second-generation alkoxy radicals (shown in red boxes). There are a number of potential reactions pathways not included in the scheme.

Scheme S 6. Speculations on the reactions of β-pinene 1-OH,8-RO2 (shown in red box) following the dominant initial unimolecular reactions. Rate coefficients for these are calculated using the approach by Møller et al. ${ }^{24}$. There are a number of potential reactions pathways not included in the scheme. ω B97X-D/aug-cc-pVTZ barrier heights suggest suggest that the major decomposition pathway of R1 in this scheme is towards the -OO group (Table S 14).

Scheme S 7. The simplified formation mechanism of hydroxy nitrates and co-products for α-pinene. The numbers marked green are from computational calculations. The numbers marked blue are experimentally constrained in this study or in the literature. The NO_{2} produced from $\mathrm{RO}_{2}+\mathrm{NO}$ is not shown in the scheme. The branching ratios of the following steps are discussed in the section S6. (1) $\mathrm{BR}_{\mathrm{H} _ \text {abs }}$ and $\mathrm{BR}_{\text {oh_add }}$ refer to the branching ratios of α-pinene reaction with OH via H abstraction and OH addition, respectively. (2) $\mathrm{BR}_{\text {add_C2 }}$ and $\mathrm{BR}_{\text {add_C3 }}$ refer to the branching ratios that OH addition to C 2 and C 3 , respectively. (3) $\mathrm{BR}_{\text {ring-open }}$ refers to the ring-opening fraction of alkyl radical. (4) "BR" refers to the nitrate branching ratio. (5) BRacetone refers to the branching ratio to form acetone. (6) "H-shift" and "ring-open" refer to the H-shift and ring-opening of R2 and R3. (7) "thermal decomp" and "+NO" refer to thermal decomposition and reaction with NO for R5 and R6.

Scheme S 8. The simplified formation mechanism of hydroxy nitrates and co-products for β-pinene. The numbers marked green are from computational calculations. The numbers marked blue are experimentally constrained in this study or in the literature. The NO_{2} produced from $\mathrm{RO}_{2}+\mathrm{NO}$ is not shown in the scheme. $\mathrm{BR}_{H_{-}}$abs and BRoH_{-}add r refer to the branching ratios of β-pinene reaction with OH via H abstraction and OH addition, respectively. $\mathrm{BR}_{\text {add_C1 }}$ and $\mathrm{BR}_{\text {add_C2 }}$ refer to the branching ratios that OH addition to C 1 and C 2 , respectively. $\mathrm{BR}_{\text {ring-open }}$ refers to the ring-opening fraction of alkyl radical. "BR" refers to the nitrate branching ratio (Table S 21). BRacetone refers to the branching ratio to form acetone. $\mathrm{BR}_{\mathrm{NOP}}$ refers to the branching ratio to form nopinone.

Figure S 1. The effects of adding O_{3} on the distribution of (a) α-pinene and (b) β-pinene hydroxy nitrates. The black lines are the GC temperature.

Figure S 2. The distributions of (a) α-pinene and (b) β-pinene hydroxy nitrates from OH oxidation and NO_{3} oxidation. The black lines indicate the GC temperature.

590
591
592

Figure S 3. The comparison between the distributions of α-pinene and β-pinene hydroxyl nitrates using the same temperature profile. The black lines indicate the GC temperature.

Figure S 4. The summed yield of two structural isomers of ring-retained hydroxy nitrates of (a) α pinene and (b) β-pinene as a function of RO_{2} bimolecular lifetime. The ratio between two structural isomers of ring-retained HNs (e.g., α-pinene $2-\mathrm{OH}, 3-\mathrm{ONO}_{2} / 3-\mathrm{OH}, 2-\mathrm{ONO}_{2}$) does not change with $\tau_{\text {bimolecular }}$ (shown in Figure 1). For experiments with $\tau_{\text {bimolecular }}$ longer than 1 s , the yield is corrected by the fraction of RO_{2} that reacts with NO , which is estimated from MCM as described in Section S2.

Figure S 5. Lowest-energy TS conformer for the 1,5 (left) and 1,6 (right) H-shift forming an allyl radical in the ring-opened anti α-pinene peroxy radical (α-pinene anti $3-\mathrm{OH}, 8-\mathrm{RO}_{2}$). The structures are optimized at the $\omega \mathrm{B} 97 \mathrm{X}-\mathrm{D} /$ aug-cc-pVTZ level of theory. The same is observed in the syn $\alpha-$ pinene $3-\mathrm{OH}, 8 \mathrm{RO}_{2}$ and β-pinene $1-\mathrm{OH}, 8-\mathrm{RO}_{2}$ systems.
(a) α-pinene
anti $3-\mathrm{OH}, 8-\mathrm{RO}_{2}$

(b) α-pinene
(c) β-pinene
syn $3-\mathrm{OH}, 8-\mathrm{RO}_{2}$

$1-\mathrm{OH}, 8-\mathrm{RO}_{2}$

Figure S 6. The lowest-energy conformers of the TS for formation of the 6 -membered endoperoxide in (a) α-pinene anti $3-\mathrm{OH}, 8-\mathrm{RO}_{2}$; (b) α-pinene $\operatorname{syn} 3-\mathrm{OH}, 8-\mathrm{RO}_{2}$ and (c) β-pinene 1 $\mathrm{OH}, 8-\mathrm{RO}_{2}$. Green halos indicate that atoms are involved in the hydrogen bond-like interaction. Blue halos are used when no such interaction exists. We calculated (F12 electronic energy with ω B97X-D/aug-cc-pVTZ zero-point energy correction) that the barrier for ring closure is 2.5 $\mathrm{kcal} / \mathrm{mol}$ larger for α-pinene anti $3-\mathrm{OH}, 8-\mathrm{RO}_{2}$ than syn conformer. The different H -bonding for $\alpha-$ pinene anti vs. syn $3-\mathrm{OH}, 8-\mathrm{RO}_{2}$ has previously been proposed by Vereecken et al. ${ }^{61}$, with a calculated barrier difference (B3LYP) of $\sim 2 \mathrm{kcal} / \mathrm{mol}$ between anti and syn.

Figure S 7. The effects of adding O_{3} on the $m / z 332$ from the α-pinene photooxidation. The black lines are the GC temperature. Note the GC column flow is 7 sccm in this experiment, instead of 5 sccm in other experiments. $2.5 \mathrm{ppmv} \mathrm{O}_{3}$ is added to the chamber after the photooxidation. GC is taken 1 hr after adding O_{3}.

Figure S 8. The correlation between the abundances of the right peak at $m / z 285$ (in Figure 3) and endoperoxide hydroxyl nitrate ($\mathrm{m} / \mathrm{z} 332$) in α-pinene oxidation. The signals are normalized by the abundance of ring-retained HNs.

Figure S 9. GC chromatogram of $m / z 269$ in three α-pinene photooxidation experiments with different RO_{2} bimolecular lifetime. The signal is normalized by that of ring-retained HNs. The last peak in the chromatogram is tentatively assigned to peroxide ketone (P 7 in Scheme 3), mainly because its signal increases with RO_{2} bimolecular lifetime.

(a) 1.0

Figure S 10. The distributions of (a) α-pinene and (b) β-pinene hydroxyl nitrates using 5 m GC column. The black lines indicate the GC temperature. α-pinene hydroxy nitrate diastereomers still do not appear to be separated using the 5 m GC. Assignment of the ring-retained isomers is speculative.

Figure S 11. The deconvolution of β-pinene hydroxy nitrates.

Figure S 12. The peak deconvolution using using four equal-width Gaussian functions ${ }^{3}$ for a representative α-pinene hydroxy nitrate distribution. Only the window for ring-retained HNs is shown and fitted.

Figure S 14. System modelled for β-pinene with structures of the various compounds.

Figure S 15. The effects of gas/particle partitioning on the distribution of (a) α-pinene and (b) β pinene hydroxyl nitrates. The data are scaled to match the abundance of ring-retained hydroxy nitrates. The black lines indicate the GC temperature.

Figure S 16. Structures of α-pinene (left) and the ring-opened α-pinene peroxy radical (right) with atom labeling of the carbon atoms used to define the unimolecular reactions.

Figure S 17. Structures of β-pinene (left) and the ring-opened β-pinene peroxy radical (right) with atom labeling of the carbon atoms used to define the unimolecular reactions.

VOC	Expt No.	Initial Concentration (ppbv)				Oxidation Time (min)	Reacted VOC Conc. (ppbv)	OH exposure$\left(10^{9} \mathrm{molec} \times \mathrm{cm}^{-3} \times \mathrm{s}\right)$
		VOC	$\mathrm{CH}_{3} \mathrm{ONO}$	NO	NO_{2}			
α-pinene	1	73.6	68.9	42.6	0.0	3.0	6.3	1.7
	2	108.0	60.2	19.8	0.0	2.5	4.7	0.8
	3	66.2	69.2	15.2	7.4	2.6	5.4	1.6
	4	66.1	62.3	5.4	2.9	5.0	3.0	0.9
	5	77.6	54.8	11.9	3.1	4.6	9.0	2.3
	6	57.7	69.9	0.0	0.0	11.0	7.8	2.7
	7	86.1	70.0	166.8	0.0	6.0	7.0	1.6
	8	82.11	68.0	320.5	0.0	10.0	8.4	2.0
	9	66.9	75.5	1100.1	0.0	30.0	7.4	2.2
	10	75.8	68.2	2241.5	94.9	15.0	7.1	1.8
	11	80.5	72.3	109.1	0.0	4.5	7.0	1.7
β-pinene	12	100.2	71.3	479.1	0.0	12.0	9.4	1.2
	13	126.3	76.5	0.0	0.0	20.0	5.2	0.5
	14	94.5	71.4	15.2	0.0	4.0	5.4	0.7
	15	109.1	75.4	80.6	0.0	5.0	8.0	1.0
	16	96.5	67.6	38.0	0.0	5.0	7.9	1.1
	17	99.7	68.9	168.9	0.0	7.0	5.5	0.7
	18	73.6	77.2	341.4	0.0	7.5	6.9	1.2
	19	73.7	76.4	52.2	0.0	4.0	7.5	1.4
	20	85.9	75.0	1253.1	0.0	20.0	9.0	1.4
	21	69.6	115.4	2773.0	0.0	20.0	6.5	1.2

Table S 1. Experimental Conditions.

Table S 2. Boltzmann averaged dipole moments (μ) and lowest-energy conformer polarizability (α) and derived collision rate (k) and CIMS sensitivity (c) of α-pinene (AN1-AN10) and β-pinene (BN1-BN5) hydroxy nitrate isomers. The structures of hydroxy nitrate isomers are shown in Scheme S 2. Dipole moments and polarizabilities are calculated at the B3LYP/cc-pVTZ level of theory.

Isomer symbol	Dipole moment $\mu(\mathrm{D})$	Polarizabilit $\mathrm{y} \alpha\left(\AA^{3}\right)$	Collision rate $k\left(10^{-9} \mathrm{~cm}^{3} \mathrm{molec}^{-1} \mathrm{~s}^{-1}\right)$	Sensitivity $c\left(10^{-4}{\left.\mathrm{ncts} \mathrm{pptv}^{-1}\right)}\right.$
AN1	3.5	21	2.6	2.0
AN2	3.5	20	2.6	1.9
AN3	2.8	20	2.2	1.7
AN4	3.4	20	2.5	1.9
AN5	2.9	20	2.3	1.7
AN6	2.8	20	2.2	1.7
AN7	2.7	20	2.2	1.6
AN8	3.0	20	2.3	1.8
AN9	3.2	20	2.4	1.8
AN10	3.4	21	2.5	1.9
BN1	3.0	20	2.3	1.8
BN2	2.9	20	2.3	1.7
BN3	3.2	20	2.4	1.8
BN4	3.2	20	2.4	1.8
BN5	3.4	21	2.5	1.9

Table S 3. Boltzmann averaged dipole moments (μ) and lowest-energy conformer polarizability (α) and derived collision rate (k) and CIMS sensitivity (c) of α-pinene and β-pinene hydroxy hydroperoxide isomers derived from the $\mathrm{RO}_{2} \mathrm{~A} 1-\mathrm{A} 10$ and B1-B5 (Scheme S 2). Dipole moments and polarizabilities are calculated at the B3LYP/cc-pVTZ level of theory.

Parent peroxy radical	Dipole moment $\mu(\mathrm{D})$	Polarizability $\alpha\left(\AA^{3}\right)$	Collision rate $k\left(10^{-9} \mathrm{~cm}^{3} \mathrm{molec}^{-1} \mathrm{~s}^{-1}\right)$	Sensitivity $c\left(10^{-4} \mathrm{ncts} \mathrm{pptv}^{-1}\right)$
A1	2.0	19.0	1.9	1.4
A2	3.1	18.4	2.4	1.8
A3	1.4	18.5	1.6	1.2
A4	3.3	18.4	2.5	1.9
A5	1.5	18.5	1.7	1.3
A6	1.5	18.5	1.7	1.3
A7	3.3	18.4	2.5	1.9
A8	1.4	18.4	1.6	1.1
A9	3.1	18.4	2.4	1.8
A10	2.2	18.8	2.0	1.5
B1	2.8	18.4	2.2	1.7
B2	2.4	18.5	2.1	1.6
B3	2.8	18.3	2.2	1.7
B4	2.8	18.3	2.2	1.7
B5	2.1	19.1	1.9	1.5

Table S 4. Boltzmann averaged dipole moments (μ) and lowest-energy conformer polarizability (α) of glycolaldehyde (calibration reference) and endoperoxide ketoaldehyde (P2 in Scheme 3, main manuscript). All values are calculated at the B3LYP/cc-pVTZ level of theory. The sensitivity of glycolaldehyde is an experimental value serving as the reference for the remaining compounds.

Compound	Dipole moment $\mu(\mathrm{D})$	Polarizability $\alpha\left(\AA^{3}\right)$	Collision rate $k\left(10^{-9} \mathrm{~cm}^{3} \mathrm{molec}^{-1} \mathrm{~s}^{-1}\right)$	Sensitivity $c\left(10^{-4} \mathrm{ncts} \mathrm{pptv}^{-1}\right)$
O_{OH}	2.3	4.6	2.1	1.5

Table S 5. Boltzmann averaged dipole moments (μ) and lowest-energy conformer polarizability (α) and derived collision rate (k) and CIMS sensitivity (c) of α-pinene hydroxy hydroperoxide (OOH) and hydroxy nitrate (N) isomers derived from the RO2 A2-A4 (Scheme S 2) as well as glycolaldehyde (calibration reference). Dipole moments and polarizabilities are calculated at the B3LYP/aug-cc-pVTZ level of theory. The sensitivity of glycolaldehyde is an experimental value serving as the reference for the remaining compounds.

Compound	Dipole moment $\mu(\mathrm{D})$	Polarizability $\alpha\left(\AA^{3}\right)$	Collision rate $k\left(10^{-9} \mathrm{~cm}^{3} \mathrm{molec}^{-1} \mathrm{~s}^{-1}\right)$	Sensitivity $c\left(10^{-4} \mathrm{ncts} \mathrm{pptv}^{-1}\right)$						
Glycolaldehyde	2.5	5.2	2.2	1.5	$	$	A2-OOH	3.2	19.2	2.5
:---:	:---:	:---:	:---:							
A3-OOH	1.4	19.3	1.7							
A4-OOH	3.5	19.2	2.6							
AN2	3.8	20.9	2.8							
AN3	3.0	20.9	2.4							
AN4	3.7	21.1	2.7							

Table S 6. Calculated MC-TST reaction rate coefficients at 298.15 K for the unimolecular reactions of the hydroxy peroxy radicals formed from α-pinene $+\mathrm{OH}+\mathrm{O}_{2}$. Calculated using the approach by Møller et al. ${ }^{24}$ All values are calculated at the ω B97X-D/aug-cc-pVTZ level, except for electronic energies of the lowest-energy conformers and IRC end-points, which are at the F12 level. Tunneling is based on IRC end-points. The abstraction/addition site refer to the structures in Figure S 16, with "-OH" referring to abstraction of the hydrogen from the hydroxy group on the specified carbon atom. The peroxy radicals are defined in Scheme S 2.

Peroxy radical	H-shift type	Abstraction/addition site	$\mathrm{k}\left(\mathrm{s}^{-1}\right)$
A1	1,5 H-shift	G	1.1
	1,5 H-shift	D	$1.2 \cdot 10^{-6}$
	1,6 H-shift	E	0.37
	6-membered endoperoxide formation	A	0.35
	7-membered endoperoxide formation	F	$2.0 \cdot 10^{-3}$
A2	1,5-OH H-shift	E-OH	-
A4	1,5-OH H-shift	F-OH	-
A7	1,5-OH H-shift	F-OH	-
A9	1,5-OH H-shift	E-OH	-
A10	1,5 H-shift	G	0.16
	1,5 H-shift	D	$8.8 \cdot 10^{-6}$
	1,7-OH H-shift	E-OH	-
	6-membered endoperoxide formation	A	2.3
	7-membered endoperoxide formation	F	$2.6 \cdot 10^{-2}$

Table S 7. Calculated MC-TST reaction rate coefficients at 298.15 K for the unimolecular reactions of the hydroxy peroxy radicals formed from β-pinene $+\mathrm{OH}+\mathrm{O}_{2}$. Calculated using the approach by Møller et al. ${ }^{24}$ All values are calculated at the ω B97X-D/aug-cc-pVTZ level, except for electronic energies of the lowest-energy conformers and IRC end-points, which are at the F12 level. Tunneling is based on IRC end-points. The abstraction/addition site refer to the structures in Figure S 17 , with "-OH" referring to abstraction of the hydrogen from the hydroxy group on the specified carbon atom. The peroxy radicals are defined in Scheme S 2.

Peroxy radical	Reaction type	Abstraction/addition site	$\mathrm{k}\left(\mathrm{s}^{-1}\right)$
B1	1,5-OH H-shift	F-OH	-
B2	1,5 H-shift	E	$8.1 \cdot 10^{-2}$
	1,5-OH H-shift	F-OH	-
B3	1,5-OH H-shift	J-OH	-
B4	1,5-OH H-shift	J-OH	-
B5	1,5 H-shift	G	1.4
	1,5 H-shift	D	$7.3 \cdot 10^{-6}$
	1,6 H-shift	E	$2.8 \cdot 10^{-1}$
	6-membered Endoperoxide formation	A	4.0
	7-membered Endoperoxide formation	F	$4.8 \cdot 10^{-2}$

Table S 8. Calculated MC-TST reaction rate coefficients at 298.15 K for the unimolecular reactions of the hydroxy peroxy radicals formed from α-pinene $+\mathrm{OH}+\mathrm{O}_{2}$. All values are calculated at the ω B97X-D/aug-cc-pVTZ level of theory with tunneling based on IRC end-points. The abstraction/addition site refer to the structures in Figure S 16, with "- OH " referring to abstraction of the hydrogen from the hydroxy group on the specified carbon atom. The peroxy radicals are defined in Scheme S 2.

Peroxy radical	H-shift type	Abstraction/addition site	$\mathrm{k}\left(\mathrm{s}^{-1}\right)$
A1	1,5 H-shift	G	$0.66{ }^{\text {a }}$
	1,5 H-shift	D	$3.0 \cdot 10^{-7}$
	1,6 H-shift	E	$0.96{ }^{\text {a }}$
	6-membered endoperoxide formation	A	$7.9 \cdot 10^{-2 \mathrm{a}}$
	7-membered endoperoxide formation	F	$1.1 \cdot 10^{-4}$
A2	1,5-OH H-shift	E-OH	$4.7 \cdot 10^{-2}$
A4	1,5-OH H-shift	F-OH	$2.8 \cdot 10^{-2}$
A7	1,5-OH H-shift	F-OH	$1.2 \cdot 10^{-2}$
A9	1,5-OH H-shift	E-OH	0.12
A10	1,5 H-shift	G	0.41
	1,5 H-shift	D	$8.3 \cdot 10^{-7}$
	1,7-OH H-shift	E-OH	$1.9 \cdot 10^{-9}$
	6-membered endoperoxide formation	A	0.95
	7-membered endoperoxide formation	F	$1.9 \cdot 10^{-3}$

${ }^{\text {a }}$ Also reported in Berndt et al. ${ }^{43}$

Table S 9. Calculated reaction rate coefficients at 298.15 K for the unimolecular reactions of the hydroxy peroxy radicals formed from β-pinene $+\mathrm{OH}+\mathrm{O}_{2}$. All values are calculated at the $\omega \mathrm{B} 97 \mathrm{X}-$ D/aug-cc-pVTZ level of theory with tunneling based on IRC end-points. The abstraction/addition site refer to the structures in Figure S 17, with "-OH" referring to abstraction of the hydrogen from the hydroxy group on the specified carbon atom. The peroxy radicals are defined in Scheme S 2.

Peroxy radical	Reaction type	Abstraction/addition site	$\mathrm{k}\left(\mathrm{s}^{-1}\right)$
B 1	1,5-OH H-shift	$\mathrm{F}-\mathrm{OH}$	$5.3 \cdot 10^{-4}$
B 2	1,5 H-shift	E	$1.9 \cdot 10^{-2}$
	1,5-OH H-shift	$\mathrm{F}-\mathrm{OH}$	$1.6 \cdot 10^{-2}$
B 3	1,5-OH H-shift	$\mathrm{J}-\mathrm{OH}$	$2.6 \cdot 10^{-4}$
B 4	$1,5-\mathrm{OH}$ H-shift	$\mathrm{J}-\mathrm{OH}$	$1.8 \cdot 10^{-3}$
B 5	1,5 H-shift	G	0.63
	1,5 H-shift	D	$2.7 \cdot 10^{-6}$
	1,6 H-shift	E	0.13
	6-membered Endoperoxide formation	A	0.34
	7-membered Endoperoxide formation	F	$1.5 \cdot 10^{-3}$

Table S 10. Calculated reaction rate coefficients at 298.15 K for the unimolecular reactions of the hydroxy peroxy radicals formed from α-pinene $+\mathrm{OH}+\mathrm{O}_{2}$. All values are calculated at the B3LYP/6-31+G(d) level of theory with tunneling assuming thermoneutral reactions. The abstraction/addition site refer to the structures in Figure S 16, with "-OH" referring to abstraction of the hydrogen from the hydroxy group on the specified carbon atom. The peroxy radicals are defined in Scheme S 2. The reactions highlighted in bold are the ones also treated at a higher level of theory.

Peroxy radical	Reaction type	Abstraction/addition site	$\mathrm{k}\left(\mathrm{s}^{-1}\right)$
A1	1,5 H-shift	G	63
	1,5 H-shift	D	$1.8 \cdot 10^{-4}$
	1,6 H-shift	E	52
	1,6 H-shift	A	$3.5 \cdot 10^{-17}$
	1,7-OH H-shift	E-OH	$9.4 \cdot 10^{-16}$
	6-membered endoperoxide formation	A	2.7
	7-membered endoperoxide formation	F	$1.7 \cdot 10^{-3}$
A2	1,4 H-shift	A	$2.9 \cdot 10^{-10}$
	1,5 H-shift	D	$8.5 \cdot 10^{-15}$
	1,4 H-shift	E	$5.8 \cdot 10^{-20}$
	1,5-OH H-shift	E-OH	2.1
	1,5 H-shift	G	$3.6 \cdot 10^{-3}$
	1,4 H-shift	J	$8.2 \cdot 10^{-9}$
A3	1,4 H-shift	A	$6.0 \cdot 10^{-11}$
	1,5 H-shift	D	$8.0 \cdot 10^{-19}$
	1,4 H-shift	E	$5.1 \cdot 10^{-4}$
	1,5-OH H-shift	E-OH	$2.2 \cdot 10^{-7}$
	1,6 H-shift	I	$1.1 \cdot 10^{-7}$
	1,4 H-shift	J	$1.3 \cdot 10^{-9}$
A4	1,4 H-shift	D	$2.8 \cdot 10^{-7}$
	1,5-OH H-shift	F-OH	7.4
	1,6 H-shift	G	$1.2 \cdot 10^{-7}$
A5	1,4 H-shift	D	$4.3 \cdot 10^{-8}$
	1,5 H-shift	J	$5.0 \cdot 10^{-5}$
	1,5-OH H-shift	F-OH	$1.9 \cdot 10^{-5}$
	1,7 H-shift	I	$5.0 \cdot 10^{-8}$
A6	1,4 H-shift	D	$3.1 \cdot 10^{-7}$
	1,5 H-shift	J	$4.7 \cdot 10^{-5}$
	1,5-OH H-shift	F-OH	$5.3 \cdot 10^{-6}$
	1,6 H-shift	G	$7.1 \cdot 10^{-8}$
A7	1,4 H-shift	D	$1.4 \cdot 10^{-8}$

	1,5 H-shift	J	$2.9 \cdot 10^{-8}$
	1,5-OH H-shift	F-OH	3.5
	1,7 H-shift	I	$2.7 \cdot 10^{-6}$
A8	1,4 H-shift	A	$1.3 \cdot 10^{-10}$
	1,5 H-shift	D	$1.2 \cdot 10^{-19}$
	1,4 H-shift	E	$1.9 \cdot 10^{-3}$
	1,5-OH H-shift	E-OH	$6.5 \cdot 10^{-7}$
	1,5 H-shift	G	$1.3 \cdot 10^{-10}$
	1,4 H-shift	J	$2.5 \cdot 10^{-9}$
A9	1,4 H-shift	A	$1.2 \cdot 10^{-11}$
	1,5 H-shift	D	$6.4 \cdot 10^{-16}$
	1,4 H-shift	E	$2.8 \cdot 10^{-23}$
	1,5-OH H-shift	E-OH	75
	1,6 H-shift	I	$1.6 \cdot 10^{-4}$
	1,4 H-shift	J	$8.9 \cdot 10^{-10}$
A10	1,5 H-shift	G	2.5
	1,5 H-shift	D	6.9•10 ${ }^{-6}$
	1,7-OH H-shift	E-OH	$5.2 \cdot 10^{-5}$
	6-membered endoperoxide formation	A	20
	7-membered endoperoxide formation	F	3.1-10-2

Peroxy radical	Reaction type	Abstraction/addition site	$\mathrm{k}\left(\mathrm{s}^{-1}\right)$
B1	1,5 H-shift	A	$5.1 \cdot 10^{-4}$
	1,6 H-shift	D	$6.1 \cdot 10^{-15}$
	1,5 H-shift	E	$1.6 \cdot 10^{-3}$
	1,5-OH H-shift	F-OH	0.61
	1,7 H-shift	I	$1.1 \cdot 10^{-4}$
B2	1,5 H-shift	A	$4.8 \cdot 10^{-4}$
	1,6 H-shift	D	$2.7 \cdot 10^{-11}$
	1,5 H-shift	E	$1.9 \cdot 10^{-2}$
	1,5-OH H-shift	F-OH	22
	1,6 H-shift	G	$5.2 \cdot 10^{-6}$
B3	1,4 H-shift	A	$6.3 \cdot 10^{-11}$
	1,5 H-shift	D	$4.4 \cdot 10^{-19}$
	1,4 H-shift	E	$1.9 \cdot 10^{-6}$
	1,5 H-shift	G	$2.4 \cdot 10^{-5}$
	1,4 H-shift	J	$6.3 \cdot 10^{-4}$
	1,5-OH H-shift	J-OH	0.81
B4	1,4 H-shift	A	$2.4 \cdot 10^{-5}$
	1,5 H-shift	D	$3.2 \cdot 10^{-17}$
	1,4 H-shift	E	$5.1 \cdot 10^{-7}$
	1,6 H-shift	I	$4.3 \cdot 10^{-6}$
	1,4 H-shift	J	$7.0 \cdot 10^{-4}$
	1,5-OH H-shift	J-OH	0.87
B5	1,5 H-shift	G	2.7
	1,5 H-shift	D	8.7 $\mathbf{1 0}^{-7}$
	1,6 H-shift	E	0.12
	1,9-OH H-shift	J-OH	$3.3 \cdot 10^{-10}$
	6-membered endoperoxide formation	A	8.3
	7-membered endoperoxide formation	F	$2.7 \cdot 10^{-2}$

Table S 11. Calculated reaction rate coefficients at 298.15 K for the unimolecular reactions of the hydroxy peroxy radicals formed from β-pinene $+\mathrm{OH}+\mathrm{O}_{2}$. All values are calculated at the B3LYP/6-31+G(d) level of theory with tunneling assuming thermoneutral reactions. The abstraction/addition site refer to the structures in Figure S 17, with "-OH" referring to abstraction of the hydrogen from the hydroxy group on the specified carbon atom. The peroxy radicals are defined in Scheme S 2. The reactions highlighted in bold are the ones also treated at a higher level of theory.

Table S 12. Imaginary frequency ($v_{\text {imag }}, \mathrm{cm}^{-1}$) of the lowest-energy TS, reaction and IRC barriers ($\mathrm{kcal} / \mathrm{mol}$), approximate Eckart tunneling coefficient calculated assuming a thermoneutral reaction ($\kappa_{\text {thermoneutral }}$) and Eckart tunneling coefficients calculated using the optimized IRC end-points ($\kappa_{\text {IRC }}$). Values are given for the unimolecular reactions of the B5 peroxy radical. All values are calculated using B3LYP/6-31+G(d). The abstraction/addition site refer to the structures in Figure S 17.

Reaction	Abstraction/ addition site	$v_{\text {imag }}$	Reaction barrier 1	Forward IRC barrier	Reverse IRC barrier	$\kappa_{\text {thermoneutral }^{2}}{ }^{2} \kappa_{\text {IRC }}{ }^{3}$	
$1,5 \mathrm{H}$-shift	G	1819 i	17.84	16.33	13.39	173.44	99.80
1,5 H-shift	D	1676 i	25.72	24.42	4.58	164.19	10.72
1,6 H-shift	E	1738 i	18.92	13.61	10.40	118.97	41.82
1,9-OH H- shift	$\mathrm{J}-\mathrm{OH}$	1322 i	27.98	22.67	3.52	13.13	4.39
6-membered endoperoxide formation	A	492 i	13.49	8.93	8.36	1.29	1.29
7-membered endoperoxide formation	F	448 i	16.53	11.97	7.79	1.23	1.23

${ }^{1}$ Energy difference (Ee+ZPVE) between lowest-energy reactant and TS conformer
${ }^{2}$ Eckart tunneling coefficient calculated using the imaginary frequency and assuming both the forward and reverse IRC barriers are equal to the reaction barrier of the forward reaction.
${ }^{3}$ Eckart tunneling coefficient calculated using the imaginary frequency and the forward and reverse barriers obtained from optimized end-points of the forward and reverse IRC from the lowest-energy TS.

Table S 13. ω B97X-D/aug-cc-pVTZ calculated barrier heights (electronic energy and zero-point correction, $\mathrm{kcal} / \mathrm{mol}$) between lowest-energy conformers for the possible bond scission pathways of α-pinene R2 (Scheme 3, main manuscript).

Isomer	Breaking towards -OO (left)	Breaking towards OH (right)
	6.2	3.0
	7.3	3.9
	6.5	2.8
	3.4	3.4

Table S 14. ω B97X-D/aug-cc-pVTZ calculated barrier heights (electronic energy and zero-point correction, $\mathrm{kcal} / \mathrm{mol}$) between lowest-energy conformers for the possible bond scission pathways of β-pinene R1 (Scheme S 6).

Isomer	Bond scission towards -OO (left)	Bond scission towards CH_{2} (right)	Bond scission towards $\mathrm{CH}_{2} \mathrm{OH}$ (up)
	2.8		

Table S 15 . Structures formed by OH -addition to α-pinene and β-pinene of the three hydroxy alkyl radicals which may potentially ring-open. For each, the amount of excess energy relative to the free reactants, the barrier for ring-opening, the calculated canonical MC-TST rate coefficient and the fraction ring-opening and adding O_{2} is given. Electronic energies for the important species are calculated using F12 and all other values using ω B97X-D/aug-cc-pVTZ.

Name	Structure	Excess energy $(\mathrm{kcal} / \mathrm{mol})$	Barrier $(\mathrm{kcal} / \mathrm{mol})$	Canonical rate coefficients $\left(\mathrm{s}^{-1}\right)$	Fraction ring- opening	Fraction adding O_{2}
$\alpha-$ pinene- OH I						
$\alpha-p i n e n e-$ OH II $\beta-$ pinene- OH	27.96	13.29	9.9×10^{2}	0.33	0.67	

Table S 16. Reaction parameters of the three hydroxy alkyl radicals formed by OH -addition to α pinene and β-pinene which may potentially ring-open. For each, the amount of excess energy relative to the free reactants, the barrier for ring-opening, the calculated canonical MC-TST rate coefficient and the fraction ring-opening and adding O_{2} is given. All values are calculated using $\omega B 97 X-D /$ aug-cc-pVTZ.

Name	Excess energy $(\mathrm{kcal} / \mathrm{mol})$	Barrier $(\mathrm{kcal} / \mathrm{mol})$	Canonical rate coefficients $\left(\mathrm{s}^{-1}\right)$	Fraction ring-opening	Fraction adding O_{2}
$\alpha-$-pinene- OH I	31.16	14.47	6.4×10^{1}	0.24	0.76
$\alpha-$ pinene- OH II	30.59	14.21	1.0×10^{2}	0.25	0.75
β-pinene- OH	30.54	13.90	1.7×10^{2}	0.37	0.63

Table S 17. Fraction ring-opening before O_{2}-addition with the ring-opening barrier height changed by $\pm 1 \mathrm{kcal} / \mathrm{mol}$. Everything else is as in Table S 15.

Name	Barrier $-1 \mathrm{kcal} / \mathrm{mol}$	Barrier $+1 \mathrm{kcal} / \mathrm{mol}$
α-pinene-OH I	0.59	0.15
α-pinene-OH II	0.57	0.15
β-pinene-OH	0.71	0.23

Table S 18. Fraction ring-opening before O_{2}-addition with the energy transfer per collision ($\Delta \mathrm{E}_{\text {down }}$) either decreased or increased by $75 \mathrm{~cm}^{-1}$. Everything else is as in Table S 15.

Name	$\Delta \mathrm{E}_{\text {down }}=150 \mathrm{~cm}^{-1}$	$\Delta \mathrm{E}_{\text {down }}=300 \mathrm{~cm}^{-1}$
α-pinene-OH I	0.49	0.24
α-pinene-OH II	0.47	0.23
β-pinene-OH	0.62	0.34

Table S 19. MC-TST reaction rate coefficients $\left(\mathrm{s}^{-1}\right)$ for three competing reactions of two ringretained α-pinene hydroxy alkoxy radicals. The barrier height is calculated using either ω B97X-D/aug-cc-pVTZ or F12 and all other values are calculated using ω B97X-D/aug-cc-pVTZ. Includes an Eckart tunneling correction for all reactions. This H-shift reaction is possible only for the isomers which have the alkoxy radical on the same side of the ring as the methyl groups on the four-membered ring and the H -shift can only occur from the methyl group pointing towards the alkoxy radical.

	Theory for barrier height	$1,5 \mathrm{H}$-shift	Bond scission towards 4- membered ring (left)	Bond scission towards OH- group (right)
	$\omega \mathrm{B} 97 \mathrm{X}-\mathrm{D}$	2.1×10^{8}	9.1×10^{5}	6.2×10^{10}
	F 12	1.9×10^{8}	-	3.5×10^{8}

Table S 20. The signals of even mass between 200 and 360 relative to $m / z 300$ in an α-pinene experiment with $\tau_{\text {bimolecular }} \sim 0.004 \mathrm{~s}^{-1}$. Only m / z with signal accounting for more than 1% of that of $m / z 300$ is included in the table. The isotope abundance of major odd mass (253, 269, and 285) has been subtracted from relevant m / z 's $(254,270$, and 286).

m / z	Signal relative to $m / z 300$	m / z	Signal relative to $m / z ~ 300$
300	1.00	282	0.02
316	0.25	264	0.02
330	0.13	216	0.02
302	0.13	304	0.02
286	0.11	246	0.02
318	0.10	270	0.02
298	0.09	212	0.02
314	0.09	278	0.02
258	0.08	210	0.02
274	0.05	332	0.02
262	0.05	242	0.02
254	0.04	260	0.01
256	0.04	202	0.01
222	0.04	320	0.01
248	0.03	346	0.01
288	0.03	266	0.01
230	0.03	204	0.01
228	0.03	214	0.01
306	0.03	250	0.01
276	0.03	240	0.01
272	0.03	234	0.01
244	0.02	220	0.01

Table S 21. The estimated nitrate branching ratio ($\mathrm{BR}_{\mathrm{RONO} 2}$) of α-pinene and β-pinene derived RO_{2}
821 under different assumptions.

${ }^{\mathrm{a}}$ Assuming that $\mathrm{BR}_{\text {add_C3 }}=0.5, \mathrm{BR}_{\alpha \text {-pinene,ring-open }}=0.32, \mathrm{BR}_{\text {add_C1 }}=0.93$, and $\mathrm{BR}_{\beta \text {-pinene,ring-open }}=$ 0.44 .
${ }^{\mathrm{b}}$ Assuming that (1) the ring-opened RO_{2} of both α-pinene and β-pinene have the same $\mathrm{BR}_{\mathrm{RONO} 2}$ and (2) all the β-hydroxy RO_{2} have the same $\mathrm{BR}_{\text {RONO2 }}$. See section S 6 for details.
${ }^{\mathrm{c}}$ Assuming that (1) the ring-opened RO_{2} of both α-pinene and β-pinene have the same $\mathrm{BR}_{\mathrm{RONO} 2}$ and (2) the ratio of $\mathrm{BR}_{\mathrm{RONO} 2}$ for tertiary, secondary, and primary β-hydroxy RO_{2} is 1.25 : $1: 0.75$. See section S6 for details.
${ }^{\text {d Peeters et al. }}{ }^{56}$ estimated based on structure-activity-relationship.
${ }^{\text {e }}$ The $\mathrm{BR}_{\text {RONO2 }}$ of 2-methyl 2-butene and methylpropene RO_{2}, which share a similar structure but different size as the substitutions on α-pinene and β-pinene C-C double bond, respectively. The values are experimentally constrained by Teng et al. ${ }^{2}$

References

1. Kurtén, T.; Møller, K. H.; Nguyen, T. B.; Schwantes, R. H.; Misztal, P. K.; Su, L.; Wennberg, P. O.; Fry, J. L.; Kjaergaard, H. G. Alkoxy Radical Bond Scissions Explain the Anomalously Low Secondary Organic Aerosol and Organonitrate Yields from A-Pinene + No3. J. Phys. Chem. Lett 2017, 2826-2834.
2. Teng, A. P.; Crounse, J. D.; Lee, L.; St. Clair, J. M.; Cohen, R. C.; Wennberg, P. O. Hydroxy Nitrate Production in the Oh-Initiated Oxidation of Alkenes. Atmos. Chem. Phys. 2015, 15, 4297-4316.
3. O'Haver Interactive Peak Fitter. Available at https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm. 2016.
4. Saunders, S. M.; Jenkin, M. E.; Derwent, R. G.; Pilling, M. J. Protocol for the Development of the Master Chemical Mechanism, Mcm V3 (Part a): Tropospheric Degradation of NonAromatic Volatile Organic Compounds. Atmos. Chem. Phys. 2003, 3, 161-180.
5. Crounse, J. D.; Paulot, F.; Kjaergaard, H. G.; Wennberg, P. O. Peroxy Radical Isomerization in the Oxidation of Isoprene. Phys. Chem. Chem. Phys. 2011, 13, 13607-13613.
6. Teng, A. P.; Crounse, J. D.; Wennberg, P. O. Isoprene Peroxy Radical Dynamics. J. Am. Chem. Soc. 2017, 139, 5367-5377.
7. Garden, A. L.; Paulot, F.; Crounse, J. D.; Maxwell-Cameron, I. J.; Wennberg, P. O.; Kjaergaard, H. G. Calculation of Conformationally Weighted Dipole Moments Useful in IonMolecule Collision Rate Estimates. Chem Phys Lett 2009, 474, 45-50.
8. Paulot, F.; Crounse, J. D.; Kjaergaard, H. G.; Kroll, J. H.; Seinfeld, J. H.; Wennberg, P. O. Isoprene Photooxidation: New Insights into the Production of Acids and Organic Nitrates. Atmos. Chem. Phys. 2009, 9, 1479-1501.
9. Crounse, J. D.; Paulot, F.; Kjaergaard, H. G.; Wennberg, P. O. Peroxy Radical Isomerization in the Oxidation of Isoprene. Phys Chem Chem Phys 2011, 13, 13607-13613.
10. Werner, H.-J.; Knizia, G.; Manby, F. R. Explicitly Correlated Coupled Cluster Methods with Pair-Specific Geminals. Molecular Physics 2011, 109, 407-417.
11. Halgren, T. A. Mmff Vii. Characterization of Mmff94, Mmff94s, and Other Widely Available Force Fields for Conformational Energies and for Intermolecular-Interaction Energies and Geometries. Journal of Computational Chemistry 1999, 20, 730-748.
12. Halgren, T. A. Merck Molecular Force Field. V. Extension of Mmff94 Using Experimental Data, Additional Computational Data, and Empirical Rules. Journal of Computational Chemistry 1996, 17, 616-641.
13. Halgren, T. A.; Nachbar, R. B. Merck Molecular Force Field. Iv. Conformational Energies and Geometries for Mmff94. Journal of Computational Chemistry 1996, 17, 587-615.
14. Halgren, T. A. Merck Molecular Force Field. Iii. Molecular Geometries and Vibrational Frequencies for Mmff94. Journal of Computational Chemistry 1996, 17, 553-586.
15. Halgren, T. A. Merck Molecular Force Field. Ii. Mmff94 Van Der Waals and Electrostatic Parameters for Intermolecular Interactions. Journal of Computational Chemistry 1996, 17, 520552.
16. Halgren, T. A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of Mmff94. Journal of Computational Chemistry 1996, 17, 490-519.
17. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H., et al. Gaussian 16 Rev. A.03, Wallingford, CT, 2016.
18. Becke, A. D. Density-Functional Thermochemistry. Iii. The Role of Exact Exchange. The Journal of Chemical Physics 1993, 98, 5648-5652.
19. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B 1988, 37, 785-789.
20. Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-Consistent Molecular Orbital Methods. Xii. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. The Journal of Chemical Physics 1972, 56, 2257-2261.
21. Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. Iii. The 3-21+G Basis Set for First-Row Elements, Li-F. Journal of Computational Chemistry 1983, 4, 294-301.
22. Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets. The Journal of Chemical Physics 1984, 80, 3265-3269.
23. Dunning Jr., T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. The Journal of Chemical Physics 1989, 90, 10071023.
24. Møller, K. H.; Otkjær, R. V.; Hyttinen, N.; Kurtén, T.; Kjaergaard, H. G. Cost-Effective Implementation of Multiconformer Transition State Theory for Peroxy Radical Hydrogen Shift Reactions. J. Phys. Chem. A 2016, 120, 10072-10087.
25. Spartan'16, Wavefunction, Inc., Irvine, CA.
26. Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Physical Chemistry Chemical Physics 2008, 10, 6615-6620.
27. Kendall, R. A.; Dunning Jr., T. H.; Harrison, R. J. Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions. The Journal of Chemical Physics 1992, 96, 6796-6806.
28. Adler, T. B.; Knizia, G.; Werner, H.-J. A Simple and Efficient Ccsd(T)-F12 Approximation. Accounts of Chemical Research 2007, 127, 221106.
29. Knizia, G.; Adler, T. B.; Werner, H.-J. Simplified Ccsd(T)-F12 Methods: Theory and Benchmarks. The Journal of Chemical Physics 2009, 130, 054104.
30. Peterson, K. A.; Adler, T. B.; Werner, H.-J. Systematically Convergent Basis Sets for Explicitly Correlated Wavefunctions: The Atoms H, He, B-Ne, and Al-Ar. The Journal of Chemical Physics 2008, 128, 084102.
31. Watts, J. D.; Gauss, J.; Bartlett, R. J. Coupled-Cluster Methods with Noniterative Triple Excitations for Restricted Open-Shell Hartree-Fock and Other General Single Determinant Reference Functions. Energies and Analytical Gradients. The Journal of Chemical Physics 1993, 98, 8718-8733.
32. Werner, H.-J.; Knizia, G.; R. Manby, F. Explicitly Correlated Coupled Cluster Methods with Pair-Specific Geminals. Molecular Physics 2011, 109, 407-417.
33. Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. Molpro: A GeneralPurpose Quantum Chemistry Program Package. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2, 242-253.
34. Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R., et al. Molpro, Version 2012.1, a Package of Ab Initio Programs, 2012.
35. Rienstra-Kiracofe, J. C.; Allen, W. D.; Schaefer, H. F. The C2h5 + O2 Reaction Mechanism: High-Level Ab Initio Characterizations. The Journal of Physical Chemistry A 2000, 104, 9823-9840.
36. Lambert, N.; Kaltsoyannis, N.; Price, S. D.; Žabka, J.; Herman, Z. Bond-Forming Reactions of Dications with Molecules: A Computational and Experimental Study of the Mechanisms for the Formation of Hcf2+ from Cf32+ and H2. The Journal of Physical Chemistry A 2006, 110, 2898-2905.
37. Jayatilaka, D.; Lee, T. J. Open-Shell Coupled-Cluster Theory. The Journal of Chemical Physics 1993, 98, 9734-9747.
38. Matlab R2016b.
39. Eckart, C. The Penetration of a Potential Barrier by Electrons. Physical Review 1930, 35, 1303-1309.
40. Evans, M. G.; Polanyi, M. Some Applications of the Transition State Method to the Calculation of Reaction Velocities, Especially in Solution. Transactions of the Faraday Society 1935, 31, 875-894.
41. Eyring, H. The Activated Complex and the Absolute Rate of Chemical Reactions. Chemical Reviews 1935, 17, 65-77.
42. Vereecken, L.; Peeters, J. The 1,5-H-Shift in 1-Butoxy: A Case Study in the Rigorous Implementation of Transition State Theory for a Multirotamer System. The Journal of Chemical Physics 2003, 119, 5159-5170.
43. Berndt, T.; Richters, S.; Jokinen, T.; Hyttinen, N.; Kurtén, T.; Otkjær, R. V.; Kjaergaard, H. G.; Stratmann, F.; Herrmann, H.; Sipilä, M., et al. Hydroxyl Radical-Induced Formation of Highly Oxidized Organic Compounds. Nat. Commun. 2016, 7, 13677.
44. Kurtén, T.; Møller, K. H.; Nguyen, T. B.; Schwantes, R. H.; Misztal, P. K.; Su, L.; Wennberg, P. O.; Fry, J. L.; Kjaergaard, H. G. Alkoxy Radical Bond Scissions Explain the Anomalously Low Secondary Organic Aerosol and Organonitrate Yields from A-Pinene + No3. The Journal of Physical Chemistry Letters 2017, 8, 2826-2834.
45. Glowacki, D. R.; Liang, C.-H.; Morley, C.; Pilling, M. J.; Robertson, S. H. Mesmer: An Open-Source Master Equation Solver for Multi-Energy Well Reactions. J. Phys. Chem. A 2012, 116, 9545-9560.
46. Chuong, B.; Davis, M.; Edwards, M.; Stevens, P. S. Measurements of the Kinetics of the Oh + A-Pinene and Oh + B-Pinene Reactions at Low Pressure. International Journal of Chemical Kinetics 2002, 34, 300-308.
47. Wu, D.; Bayes, K. D. Rate Constants for the Reactions of Isobutyl, Neopentyl, Cyclopentyl, and Cyclohexyl Radicals with Molecular Oxygen. International Journal of Chemical Kinetics 1986, 18, 547-554.
48. Allen, H. M.; Crounse, J. D.; Bates, K. H.; Teng, A. P.; Krawiec-Thayer, M. P.; RiveraRios, J. C.; Keutsch, F. N.; St. Clair, J. M.; Hanisco, T. F.; Møller, K. H., et al. Kinetics and Product Yields of the Oh Initiated Oxidation of Hydroxymethyl Hydroperoxide. The Journal of Physical Chemistry A 2018, 122, 6292-6302.
49. Forst, W. Analytic Solution of Relaxation in a System with Exponential Transition Probabilities. Iii. Macroscopic Disequilibrium. The Journal of Chemical Physics 1984, 80, 25042513.
50. Kurtén, T.; Rissanen, M. P.; Mackeprang, K.; Thornton, J. A.; Hyttinen, N.; Jørgensen, S.; Ehn, M.; Kjaergaard, H. G. Computational Study of Hydrogen Shifts and Ring-Opening

Mechanisms in A-Pinene Ozonolysis Products. The Journal of Physical Chemistry A 2015, 119, 11366-11375.
51. Cuadros, F.; Cachadiña, I.; Ahumada, W. Determination of Lennard-Jones Interaction Parameters Using a New Procedure. Molecular Engineering 1996, 6, 319-325.
52. Su, T.; Chesnavich, W. J. Parametrization of the Ion-Polar Molecule Collision Rate Constant by Trajectory Calculations. The Journal of Chemical Physics 1982, 76, 5183-5185.
53. Atkinson, R.; Aschmann, S. M.; Carter, W. P. L.; Winer, A. M.; Pitts, J. N. Alkyl Nitrate Formation from the Nitrogen Oxide (Nox)-Air Photooxidations of C2-C8 N-Alkanes. The Journal of Physical Chemistry 1982, 86, 4563-4569.
54. Eddingsaas, N. C.; Loza, C. L.; Yee, L. D.; Chan, M.; Schilling, K. A.; Chhabra, P. S.; Seinfeld, J. H.; Wennberg, P. O. A-Pinene Photooxidation under Controlled Chemical Conditions \&Ndash; Part 2: Soa Yield and Composition in Low- and High-Nox Environments. Atmos. Chem. Phys. 2012, 12, 7413-7427.
55. Bean, J. K.; Hildebrandt Ruiz, L. Gas-Particle Partitioning and Hydrolysis of Organic Nitrates Formed from the Oxidation of A-Pinene in Environmental Chamber Experiments. Atmos. Chem. Phys. 2016, 16, 2175-2184.
56. Nozière, B.; Barnes, I.; Becker, K.-H. Product Study and Mechanisms of the Reactions of A-Pinene and of Pinonaldehyde with Oh Radicals. Journal of Geophysical Research: Atmospheres 1999, 104, 23645-23656.
57. Cleaves, H. J., Branching Ratio. In Encyclopedia of Astrobiology, Gargaud, M.; Amils, R.; Quintanilla, J. C.; Cleaves, H. J.; Irvine, W. M.; Pinti, D. L.; Viso, M., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp 218-218.
58. Peeters, J.; Vereecken, L.; Fantechi, G. The Detailed Mechanism of the Oh-Initiated Atmospheric Oxidation of A-Pinene: A Theoretical Study. Phys. Chem. Chem. Phys. 2001, 3, 5489-5504.
59. Vereecken, L.; Peeters, J. Theoretical Study of the Formation of Acetone in the OhInitiated Atmospheric Oxidation of A-Pinene. J. Phys. Chem. A 2000, 104, 11140-11146.
60. Wennberg, P. O.; Bates, K. H.; Crounse, J. D.; Dodson, L. G.; McVay, R. C.; Mertens, L. A.; Nguyen, T. B.; Praske, E.; Schwantes, R. H.; Smarte, M. D., et al. Gas-Phase Reactions of Isoprene and Its Major Oxidation Products. Chem. Rev. 2018, 118, 3337-3390.
61. Vereecken, L.; Muller, J. F.; Peeters, J. Low-Volatility Poly-Oxygenates in the Oh-Initiated Atmospheric Oxidation of A-Pinene: Impact of Non-Traditional Peroxyl Radical Chemistry. Phys. Chem. Chem. Phys. 2007, 9, 5241-5248.
62. Aschmann, S. M.; Atkinson, R.; Arey, J. Products of Reaction of Oh Radicals with APinene. J. Geophys. Res. - Atmos 2002, 107, ACH 6-1-ACH 6-7.
63. Wisthaler, A.; Jensen, N. R.; Winterhalter, R.; Lindinger, W.; Hjorth, J. Measurements of Acetone and Other Gas Phase Product Yields from the Oh-Initiated Oxidation of Terpenes by Proton-Transfer-Reaction Mass Spectrometry (Ptr-Ms). Atmospheric Environ. 2001, 35, 61816191.

