6 research outputs found

    Acute Vascular Events: Cellular and Molecular Mechanisms

    Get PDF
    Cardiovascular diseases (CVDs) are the leading cause of death worldwide. An estimated 17.9 million individuals died from CVDs in 2019, representing 32% of all global deaths. Of these deaths, 85% were due to heart attack and stroke. Cardiometabolic risks, such as hypertension, excess weight, obesity, type 2 diabetes, and vascular diseases, contribute significantly to the progression of coronary artery disease. Known sequelae of events that lead to these cardiometabolic diseases include oxidative stress, inflammation, development of dysfunction of vascular adipose tissue, altered blood pressure and blood lipids, altered glucose metabolism, hardening of the arteries, endothelial dysfunction, development of atherosclerotic plaques, and activation of platelet and coagulation pathways. The Framingham Heart Study Group has developed a Risk Score that estimates the risk of developing heart disease in a 10-year period. This group of experts has developed mathematical functions for predicting clinical coronary disease events. These prediction capabilities are derived by assigning weights to major CVD risk factors such as sex, age, blood pressure, total cholesterol, low-density lipoprotein, high-density lipoprotein cholesterol, smoking behavior, and diabetes status. Currently, there is a growing interest in the use of artificial intelligence and machine learning applications. AI-based mimetic pattern-based algorithms seem to be better than the conventional Framingham Risk Score, in predicting clinical events related to CVDs. However, there are limitations to these applications as they do not have access to data on the specific factors that trigger acute vascular events, such as heart attack and stroke. This overview briefly discusses some salient cellular and molecular mechanisms involved in precipitating thrombotic conditions. Further improvements in emerging technologies will provide greater opportunities for patient selection and treatment options. Several clinical studies have demonstrated that most CVDs can be prevented by addressing behavioral risk factors such as tobacco use, unhealthy diet and obesity, physical activity, and harmful use of alcohol. Early detection and better management of the modifiable risks seem to be the only way to reduce, reverse, or prevent these diseases

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    HLA alleles and sustained peanut consumption promote IgG4 responses in subjects protected from peanut allergy

    No full text
    We investigated the interplay between genetics and oral peanut protein exposure in the determination of the immunological response to peanut using the targeted intervention in the LEAP clinical trial. We identified an association between peanut-specific IgG4 and HLA-DQA1*01:02 that was only observed in the presence of sustained oral peanut protein exposure. The association between IgG4 and HLA-DQA1*01:02 was driven by IgG4 specific for the Ara h 2 component. Once peanut consumption ceased, the association between IgG4-specific Ara h 2 and HLA-DQA1*01:02 was attenuated. The association was validated by observing expanded IgG4-specific epitopes in people who carried HLA-DQA1*01:02. Notably, we confirmed the previously reported associations with HLA-DQA1*01:02 and peanut allergy risk in the absence of oral peanut protein exposure. Interaction between HLA and presence or absence of exposure to peanut in an allergen- and epitope-specific manner implicates a mechanism of antigen recognition that is fundamental to driving immune responses related to allergy risk or protection

    Image_2_HLA-associated outcomes in peanut oral immunotherapy trials identify mechanistic and clinical determinants of therapeutic success.pdf

    No full text
    RationalePrevious studies identified an interaction between HLA and oral peanut exposure. HLA-DQA1*01:02 had a protective role with the induction of Ara h 2 epitope-specific IgG4 associated with peanut consumption during the LEAP clinical trial for prevention of peanut allergy, while it was a risk allele for peanut allergy in the peanut avoidance group. We have now evaluated this gene-environment interaction in two subsequent peanut oral immunotherapy (OIT) trials - IMPACT and POISED - to better understand the potential for the HLA-DQA1*01:02 allele as an indicator of higher likelihood of desensitization, sustained unresponsiveness, and peanut allergy remission.MethodsWe determined HLA-DQA1*01:02 carrier status using genome sequencing from POISED (N=118, age: 7-55yr) and IMPACT (N=126, age: 12-ResultsWhile not quite statistically significant, a higher proportion of HLA-DQA1*01:02 carriers receiving OIT in IMPACT were desensitized (93%) compared to non-carriers (78%); odds ratio (OR)=5.74 (p=0.06). In this sample we also observed that a higher proportion of carriers achieved remission (35%) compared to non-carriers (22%); OR=1.26 (p=0.80). In POISED, carriers more frequently attained continued desensitization (80% versus 61% among non-carriers; OR=1.28, p=0.86) and achieved SU (52% versus 31%; OR=2.32, p=0.19). psIgG4 associations with HLA-DQA1*01:02 in the OIT arm of IMPACT which included younger study subjects recapitulated patterns noted in LEAP, but no associations of note were observed in the older POISED study subjects.ConclusionsFindings across three clinical trials show a pattern of a gene environment interaction between HLA and oral peanut exposure. Age, and prior sensitization contribute additional determinants of outcomes, consistent with a mechanism of restricted antigen recognition fundamental to driving protective immune responses to OIT.</p

    Image_1_HLA-associated outcomes in peanut oral immunotherapy trials identify mechanistic and clinical determinants of therapeutic success.pdf

    No full text
    RationalePrevious studies identified an interaction between HLA and oral peanut exposure. HLA-DQA1*01:02 had a protective role with the induction of Ara h 2 epitope-specific IgG4 associated with peanut consumption during the LEAP clinical trial for prevention of peanut allergy, while it was a risk allele for peanut allergy in the peanut avoidance group. We have now evaluated this gene-environment interaction in two subsequent peanut oral immunotherapy (OIT) trials - IMPACT and POISED - to better understand the potential for the HLA-DQA1*01:02 allele as an indicator of higher likelihood of desensitization, sustained unresponsiveness, and peanut allergy remission.MethodsWe determined HLA-DQA1*01:02 carrier status using genome sequencing from POISED (N=118, age: 7-55yr) and IMPACT (N=126, age: 12-ResultsWhile not quite statistically significant, a higher proportion of HLA-DQA1*01:02 carriers receiving OIT in IMPACT were desensitized (93%) compared to non-carriers (78%); odds ratio (OR)=5.74 (p=0.06). In this sample we also observed that a higher proportion of carriers achieved remission (35%) compared to non-carriers (22%); OR=1.26 (p=0.80). In POISED, carriers more frequently attained continued desensitization (80% versus 61% among non-carriers; OR=1.28, p=0.86) and achieved SU (52% versus 31%; OR=2.32, p=0.19). psIgG4 associations with HLA-DQA1*01:02 in the OIT arm of IMPACT which included younger study subjects recapitulated patterns noted in LEAP, but no associations of note were observed in the older POISED study subjects.ConclusionsFindings across three clinical trials show a pattern of a gene environment interaction between HLA and oral peanut exposure. Age, and prior sensitization contribute additional determinants of outcomes, consistent with a mechanism of restricted antigen recognition fundamental to driving protective immune responses to OIT.</p
    corecore