42 research outputs found

    Low-power density of 950 MHz radiation does not affect long-term potentiation in rat dentate gyrus

    Get PDF
    Introduction: Over the last decade, exposure to non-ionizing electromagnetic waves due to base station antenna has increased. This in vivo study was planned for evaluating the effects of whole-body exposure to 950 MHz field of GSM mobile phone system on rat dentate gyrus long-term potentiation. Materials and methods: 24 naive male Wistar rats (3 month old, 225±25 g) were randomly divided in the three groups (sham-exposed, GSM and continuous field exposed). The exposure program was planned for 10 sessions at 3 days. Animals were exposed to electromagnetic field for 45 minutes in a circular plastic chamber (mean power density=0.835 mW/cm2). Immediately after end exposure, anesthesia was induced for long term potentiation (LTP) induction. Field potentials were recorded and analyzed using the population spike amplitude and EPSP slope for 60-min. Results; There were no significant differences in population spike amplitude, EPSP slope and EPSP slope maintenance among the three groups. Conclusion: This study provides no evidence indicating that long-term potentiation can be affected by the whole-body exposure to low-power density of 950 MHz field of GSM mobile phone System

    Prevalence of overweight and obesity among Chinese Yi nationality: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overweight and obesity are considered a serious health problem. There are little data on the prevalence of overweight and obesity among the Yi ethnic group in China. This study aimed to investigate the epidemiologic features of overweight/obesity among Chinese Yi nationality.</p> <p>Methods</p> <p>A cross-sectional study, including 1255 subjects aged 20-75 years, was carried out in Liangshan Yi Autonomous Prefecture of Sichuan province from 2007 to 2008. Overweight/overall obesity was defined by World Health Organization (WHO) or the Working Group on Obesity in China.</p> <p>Results</p> <p>Overall, the prevalence of overweight and obesity was 19.0% and 2.9%, respectively, based on the WHO definition, while it was 21.0% and 7.4%, respectively, according to the Working Group on Obesity in China, which is similar to data reported in the 2002 Chinese National Nutrition and Health Survey. Urban residents had a significantly higher prevalence of obesity (WHO criteria: 4.3% vs 1.7% <it>p </it>= 0.008; China criteria: 11.4% vs 3.7%, <it>p </it>< 0.001) and overweight (WHO criteria: 28.9% vs 8.9% <it>p </it>< 0.001; China criteria: 31.2% vs 10.4%, <it>p </it>< 0.001) than that in rural residents. Older age, a family history of obesity, higher income, drinking and urban residence were significantly associated with an increased risk of overweight/obesity.</p> <p>Conclusions</p> <p>The prevalence of overweight/obesity in the Yi nationality is similar to that in Chinese adults 5 years ago. However, urban residents have a much higher prevalence of overweight/obesity than their rural counterparts. Lifestyle and diet patterns associated with socioeconomic status may explain the difference between urban and rural residents. The prevention of overweight/obesity among urban inhabitants deserves more attention in national health education programs.</p

    Assessing animal affect: an automated and self-initiated judgement bias task based on natural investigative behaviour

    Get PDF
    Scientific methods for assessing animal affect, especially affective valence (positivity or negativity), allow us to evaluate animal welfare and the effectiveness of 3Rs Refinements designed to improve wellbeing. Judgement bias tasks measure valence; however, task-training may be lengthy and/or require significant time from researchers. Here we develop an automated and self-initiated judgement bias task for rats which capitalises on their natural investigative behaviour. Rats insert their noses into a food trough to start trials. They then hear a tone and learn either to stay for 2 s to receive a food reward or to withdraw promptly to avoid an air-puff. Which contingency applies is signalled by two different tones. Judgement bias is measured by responses to intermediate ambiguous tones. In two experiments we show that rats learn the task in fewer sessions than other automated variants, generalise responses across ambiguous tones as expected, self-initiate 4-5 trials/min, and can be tested repeatedly. Affect manipulations generate main effect trends in the predicted directions, although not localised to ambiguous tones, so further construct validation is required. We also find that tone-reinforcer pairings and reinforcement or non-reinforcement of ambiguous trials can affect responses to ambiguity. This translatable task should facilitate more widespread uptake of judgement bias testing

    Reward devaluation disrupts latent inhibition in fear conditioning

    Get PDF
    Three experiments explored the link between reward shifts and latent inhibition (LI). Using consummatory procedures, rewards were either downshifted from 32% to 4% sucrose (Experiments 1–2), or upshifted from 4% to 32% sucrose (Experiment 3). In both cases, appropriate unshifted controls were also included. LI was implemented in terms of fear conditioning involving a single tone-shock pairing after extensive tone-only preexposure. Nonpreexposed controls were also included. Experiment 1 demonstrated a typical LI effect (i.e., disruption of fear conditioning after preexposure to the tone) in animals previously exposed only to 4% sucrose. However, the LI effect was eliminated by preexposure to a 32%-to-4% sucrose devaluation. Experiment 2 replicated this effect when the LI protocol was administered immediately after the reward devaluation event. However, LI was restored when preexposure was administered after a 60- min retention interval. Finally, Experiment 3 showed that a reward upshift did not affect LI. These results point to a significant role of negative emotion related to reward devaluation in the enhancement of stimulus processing despite extensive nonreinforced preexposure experience

    Gastrin-Releasing Peptide Signaling Plays a Limited and Subtle Role in Amygdala Physiology and Aversive Memory

    Get PDF
    Links between synaptic plasticity in the lateral amygdala (LA) and Pavlovian fear learning are well established. Neuropeptides including gastrin-releasing peptide (GRP) can modulate LA function. GRP increases inhibition in the LA and mice lacking the GRP receptor (GRPR KO) show more pronounced and persistent fear after single-trial associative learning. Here, we confirmed these initial findings and examined whether they extrapolate to more aspects of amygdala physiology and to other forms of aversive associative learning. GRP application in brain slices from wildtype but not GRPR KO mice increased spontaneous inhibitory activity in LA pyramidal neurons. In amygdala slices from GRPR KO mice, GRP did not increase inhibitory activity. In comparison to wildtype, short- but not long-term plasticity was increased in the cortico-lateral amygdala (LA) pathway of GRPR KO amygdala slices, whereas no changes were detected in the thalamo-LA pathway. In addition, GRPR KO mice showed enhanced fear evoked by single-trial conditioning and reduced spontaneous firing of neurons in the central nucleus of the amygdala (CeA). Altogether, these results are consistent with a potentially important modulatory role of GRP/GRPR signaling in the amygdala. However, administration of GRP or the GRPR antagonist (D-Phe6, Leu-NHEt13, des-Met14)-Bombesin (6–14) did not affect amygdala LTP in brain slices, nor did they affect the expression of conditioned fear following intra-amygdala administration. GRPR KO mice also failed to show differences in fear expression and extinction after multiple-trial fear conditioning, and there were no differences in conditioned taste aversion or gustatory neophobia. Collectively, our data indicate that GRP/GRPR signaling modulates amygdala physiology in a paradigm-specific fashion that likely is insufficient to generate therapeutic effects across amygdala-dependent disorders

    Localization of Mineralocorticoid Receptors at Mammalian Synapses

    Get PDF
    In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids

    A comparative evaluation of acute stress and corticosterone on the process of learning and emotional memory in rat

    No full text
    &quot;nBackground: Previous studies suggested that stressful events that release Glucocorticoid from adrenal cortex and also injection of agonists of glucocorticoids receptors probably affect emotional learning and memory process and modulate them. The aim of this study was to determine the effects of acute stress and systemic injection of Corticosterone (as agonist of glucocorticoid receptors) on acquisition (ACQ), consolidation (CONS) and retrieval (RET) of emotional memory in rat. &quot;nMethods: In this experimental study we used 180 male Wistar rats (220-250). At the first rats was training in one trial inhibitory avoidance task. On the retention test given 48 h after training, the latency to re-enter the dark compartment of the apparatus (Step-through latency, STL) and the time spent in light chamber (TLC) were recorded during 10 min test. Intraperitoneal corticosterone in doses of 0.5, 1 and 3mg/kg injected 30min before, immediately after instruction and 30min before retrieval test. Also some groups received 10min stressful stimulation by restrainer at the same time. At the end locomotor&apos;s activity was measured for all animals. &quot;nResults: The data indicated that administration of corticosterone 30min before ACQ (1mg/kg), and immediately after CONS (1, 3mg/kg) enhance and 30min before RET (1, 3mg/kg) impair emotional memory (p&amp;lt;0.05). Acute stress impaired emotional memory in all phases (p&amp;lt;0.05). Also acute stress and injection of Corticosterone have not significantly affect motor activity.&amp;nbsp; &quot;nConclusions: These findings show that Glucocorticoid receptors in activation dependently plays an important role in modulation of emotional spatial memory processes (ACQ, CONS and RET in new information) for emotional events and these effects varies in different phases

    The Effect of Reversible Abolition of Basolateral Amygdala on Hippocampal Dependent Spatial Memory Processes in Mice

    No full text
    Introduction: Many evidences have suggested that the Basolateral Amygdala (BLA) are probably involved in emotional learning and modulation of spatial memory processes. The aim of this present study was assessment of the effect of reversible abolition of BLA on spatial memory processes in a place avoidance learning model in a stable environment. Methods and Materials: Long-Evans strain rats (280-320 gr.) were selected and cannulae aimed at the BLA were surgically implanted bilaterally. The mice were trained to avoid a 60° segment of the arena by punishing with a mild foot shock upon entering the area. The punished sector was defined by room cues during the place avoidance training, which occurred in a single 30-min session and the avoidance memory was assessed during a 30-min extinction trial after 24 hours. The time of the first entry and the number of entrances into the punished sector during extinction were used to measure the place avoidance memory. Bilateral injections of Tetrodotoxin (5ng/0.6ml per side) were used to inactivate the BLA 60 min before acquisition, immediately, 60 and 120 min after training, or 60 min before the retrieval test. Control mice were injected saline at the same time. Results : The results indicated that acquisition, consolidation (immediately, 60 min after training) and retrieval of spatial memory in stable arena were impaired (p0.05). Conclusion: We conclude that the Basolateral Amygdala (BLA) modulate spatial memory processes in place avoidance learning model in stable arena and this effect in regard to consolidation is time dependent
    corecore