84 research outputs found
On the Alexandrov Topology of sub-Lorentzian Manifolds
It is commonly known that in Riemannian and sub-Riemannian Geometry, the
metric tensor on a manifold defines a distance function. In Lorentzian
Geometry, instead of a distance function it provides causal relations and the
Lorentzian time-separation function. Both lead to the definition of the
Alexandrov topology, which is linked to the property of strong causality of a
space-time. We studied three possible ways to define the Alexandrov topology on
sub-Lorentzian manifolds, which usually give different topologies, but agree in
the Lorentzian case. We investigated their relationships to each other and the
manifold's original topology and their link to causality.Comment: 20 page
Basic properties of nonsmooth Hormander's vector fields and Poincare's inequality
We consider a family of vector fields defined in some bounded domain of R^p,
and we assume that they satisfy Hormander's rank condition of some step r, and
that their coefficients have r-1 continuous derivatives. We extend to this
nonsmooth context some results which are well-known for smooth Hormander's
vector fields, namely: some basic properties of the distance induced by the
vector fields, the doubling condition, Chow's connectivity theorem, and, under
the stronger assumption that the coefficients belong to C^{r-1,1}, Poincare's
inequality. By known results, these facts also imply a Sobolev embedding. All
these tools allow to draw some consequences about second order differential
operators modeled on these nonsmooth Hormander's vector fields.Comment: 60 pages, LaTeX; Section 6 added and Section 7 (6 in the previous
version) changed. Some references adde
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
We present a novel application of Fiber Bragg Grating (FBG) sensors in the
construction and characterisation of Micro Pattern Gaseous Detector (MPGD),
with particular attention to the realisation of the largest triple (Gas
electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the
CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of
about 0.5 m2 active area each, employing three GEM foils per chamber, to be
installed in the forward region of the CMS endcap during the long shutdown of
LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM
foils that are mechanically stretched in order to secure their flatness and the
consequent uniform performance of the GE1/1 chamber across its whole active
surface. So far FBGs have been used in high energy physics mainly as high
precision positioning and re-positioning sensors and as low cost, easy to
mount, low space consuming temperature sensors. FBGs are also commonly used for
very precise strain measurements in material studies. In this work we present a
novel use of FBGs as flatness and mechanical tensioning sensors applied to the
wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used
to determine the optimal mechanical tension applied and to characterise the
mechanical tension that should be applied to the foils. We discuss the results
of the test done on a full-sized GE1/1 final prototype, the studies done to
fully characterise the GEM material, how this information was used to define a
standard assembly procedure and possible future developments.Comment: 4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste,
Italy). arXiv admin note: text overlap with arXiv:1512.0848
Overview of large area triple-GEM detectors for the CMS forward muon upgrade
In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS
Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment
The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on chambers design features and will discuss the performance of the upgraded detector
Charged particle detection performance of Gas Electron Multiplier (GEM) detectors for the upgrade of CMS endcap muon system at the CERN LHC
The Compact Muon Solenoid (CMS) detector is one of the two general-purpose detectors at the CERN LHC. LHC will provide exceptional high instantaneous and integrated luminosity after second long shutdown. The forward region |η| ≥ 1:5 of CMS detector will face extremely high particle rates in tens of kHz/cm2 and hence it will affect the momentum resolution, efficiency and longevity of the muon detectors. Here, η is pseudorapidity defined as η = -ln(tan(θ/2)), where θ is the polar angle measured from z-axis. To overcome these issues the CMSGEM collaboration has proposed to install new large size rate capable Triple Gas Electron Multiplier (GEM) detectors in the forward region of CMS muon system. The first set of Triple GEM detectors will be installed in the GE1/1 region (1:6 <; |η| <; 2.2) of the muon endcap during the long shutdown 2 (LS2) of the LHC. Towards this goal, full size CMS Triple GEM detectors have been fabricated and tested at the CERN SPS, H2 and H4 test beam facility. The GEM detectors were operated with two gas mixtures: Ar/CO2 (70/30) and Ar/CO2/CF4 (45/15/40). In 2014, good quality data was collected during test beam campaigns. In this paper, the performance of the detectors is summarized based on their tracking efficiency and time resolution
Design of a constant fraction discriminator for the VFAT3 front-end ASIC of the CMS GEM detector
In this work the design of a constant fraction discriminator (CFD) to be used in the VFAT3 chip for the read-out of the triple-GEM detectors of the CMS experiment, is described. A prototype chip containing 8 CFDs was implemented using 130 nm CMOS technology and test results are shown. © CERN 2016
Quality control for the first large areas of triple-GEM chambers for the CMS endcaps
The CMS Collaboration plans to equip the very forward muon system with triple-GEM detectors that can withstand the environment of the High-Luminosity LHC.This project is at the final stages of R&D and moving to production. A large area of several 100 m 2 are to be instrumented with GEM detectors which will be produced in six different sites around the world. A common construction and quality control procedure is required to ensure the performance of each detector.The quality control steps will include optical inspection,cleaning and baking of all materials and parts used to build the detector,leakage current tests of the GEM foils,high voltage tests,gas leak tests of the chambers and monitoring pressures time,gain calibration to know the optimal operation region of the detector,gain uniformity tests, and studying the efficiency,noise and tracking performance of the detectors in a cosmic stand using scintillator
Operational experience with the GEM detector assembly lines for the CMS forward muon upgrade
The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement
GrailQuest & HERMES: Hunting for Gravitational Wave Electromagnetic Counterparts and Probing Space-Time Quantum Foam
Within Quantum Gravity theories, different models for space-time quantisation predict an energy dependent speed for photons. Although the predicted discrepancies are minuscule, GRB, occurring at cosmological distances, could be used to detect this signature of space-time granularity with a new concept of modular observatory of huge overall collecting area consisting in a fleet of small satellites in low orbits, with sub-microsecond time resolution and wide energy band (keV-MeV). The enormous number of collected photons will allow to effectively search these energy dependent delays. Moreover, GrailQuest will allow to perform temporal triangulation of high signal-to-noise impulsive events with arc-second positional accuracies: an extraordinary sensitive X-ray/Gamma all-sky monitor crucial for hunting the elusive electromagnetic counterparts of GW. A pathfinder of GrailQuest is already under development through the HERMES project: a fleet of six 3U cube-sats to be launched by 2021/22
- …