23 research outputs found

    Proenkephalin A and bioactive adrenomedullin are useful for risk prognostication in cardiac surgery

    Get PDF
    IntroductionVarious clinical scores have been developed to predict organ dysfunction and mortality in patients undergoing cardiac surgery, but outcome prediction may be inaccurate for some patient groups. Proenkephalin A (penKid) and bioactive adrenomedullin (bio-ADM) have emerged as promising biomarkers correlating with shock and organ dysfunction. This imposes the question of whether they can be used as prognostic biomarkers for risk stratification in the perioperative setting of cardiac surgery.MethodsPatients undergoing cardiac surgery were prospectively enrolled in this observational study. PenKid and bio-ADM plasma levels, as well as markers evaluating inflammation and organ dysfunction, were measured at five perioperative time points from before the induction of anesthesia to up to 48 h postoperatively. Clinical data regarding organ dysfunction and patient outcomes were recorded during the intensive care unit (ICU)-stay with a special focus on acute kidney injury (AKI).ResultsIn 136 patients undergoing cardiac surgery, the bio-ADM levels increased and the penKid levels decreased significantly over time. PenKid was associated with chronic kidney disease (CKD), the incidence of AKI, and renal replacement therapy (RRT). Bio-ADM was associated with lactate and the need for vasopressors. PenKid was useful to predict an ICU-length of stay (LOS)>1 day and added prognostic value to the European System for Cardiac Operative Risk Evaluation Score (EuroSCORE) II when measured after the end of cardiopulmonary bypass and 24 h after cardiac surgery. For bio-ADM, the same was true when measured 24 h after surgery. PenKid also added prognostic value to the EuroSCORE II for the combined outcome “ICU length of stay >1 day and in-hospital mortality.”ConclusionThe combination of preoperative EuroSCORE II and intraoperative measurement of penKid may be more useful to predict a prolonged ICU LOS and increased mortality than EuroSCORE II alone. Bio-ADM correlates with markers of shock. More research is encouraged for early risk stratification and validation of penKid and bio-ADM as a tool involved in clinical decisions, which may enable the early initiation of organ protective strategies

    Inhaled nitric oxide preserves ventricular function during resuscitation using a percutaneous mechanical circulatory support device in a porcine cardiac arrest model: an echocardiographic myocardial work analysis

    No full text
    Background!#!Resuscitation using a percutaneous mechanical circulatory support device (iCPR) improves survival after cardiac arrest (CA). We hypothesized that the addition of inhaled nitric oxide (iNO) during iCPR might prove synergistic, leading to improved myocardial performance due to lowering of right ventricular (RV) afterload, left ventricular (LV) preload, and myocardial energetics. This study aimed to characterize the changes in LV and RV function and global myocardial work indices (GWI) following iCPR, both with and without iNO, using 2-D transesophageal echocardiography (TEE) and GWI evaluation as a novel non-invasive measurement.!##!Methods!#!In 10 pigs, iCPR was initiated following electrically-induced CA and 10 min of untreated ventricular fibrillation (VF). Pigs were randomized to either 20 ppm (20 ppm, n = 5) or 0 ppm (0 ppm, n = 5) of iNO in addition to therapeutic hypothermia for 5 h following ROSC. All animals received TEE at five pre-specified time-points and invasive hemodynamic monitoring.!##!Results!#!LV end-diastolic volume (LVEDV) increased significantly in both groups following CA. iCPR alone led to significant LV unloading at 5 h post-ROSC with LVEDV values reaching baseline values in both groups (20 ppm: 68.2 ± 2.7 vs. 70.8 ± 6.1 mL, p = 0.486; 0 ppm: 70.8 ± 1.3 vs. 72.3 ± 4.2 mL, p = 0.813, respectively). LV global longitudinal strain (GLS) increased in both groups following CA. LV-GLS recovered significantly better in the 20 ppm group at 5 h post-ROSC (20 ppm: - 18 ± 3% vs. 0 ppm: - 13 ± 2%, p = 0.025). LV-GWI decreased in both groups after CA with no difference between the groups. Within 0 ppm group, LV-GWI decreased significantly at 5 h post-ROSC compared to baseline (1,125 ± 214 vs. 1,835 ± 305 mmHg%, p = 0.011). RV-GWI was higher in the 20 ppm group at 3 h and 5 h post-ROSC (20 ppm: 189 ± 43 vs. 0 ppm: 108 ± 22 mmHg%, p = 0.049 and 20 ppm: 261 ± 54 vs. 0 ppm: 152 ± 42 mmHg%, p = 0.041). The blood flow calculated by the Impella controller following iCPR initiation correlated well with the pulsed-wave Doppler (PWD) derived pulmonary flow (PWD vs. controller: 1.8 ± 0.2 vs. 1.9 ± 0.2L/min, r = 0.85, p = 0.012).!##!Conclusions!#!iCPR after CA provided sufficient unloading and preservation of the LV systolic function by improving LV-GWI recovery. The addition of iNO to iCPR enabled better preservation of the RV-function as determined by better RV-GWI. Additionally, Impella-derived flow provided an accurate measure of total flow during iCPR

    Transesophageal echocardiography in swine: evaluation of left and right ventricular structure, function and myocardial work

    No full text
    This study aimed to determine standard left (LV) and right ventricular (RV) transesophageal echocardiographic (TEE) measurements in swine. Additionally, global myocardial work index (GWI) was estimated using pressure-strain loops (PSL). A comprehensive TEE examination was conducted in ten anesthetized, intubated and mechanically ventilated healthy female German landrace swine, weighing 44 to 57 kg. For GWI calculation, we performed LV and RV segmental strain analysis and used invasively measured LV and RV pressure to obtain PSL. The GWI and further myocardial work indices were calculated from the area of the PSL using commercially available software. Furthermore, hemodynamic measurements were obtained using indwelling catheters. We obtained complete standardized baseline values for left and right ventricular dimensions and function. Biplane LV ejection fraction was 63 ± 7 % and the LV end-diastolic volume was 70.5 ± 5.9 ml. Tissue Doppler estimated peak tricuspid annular systolic velocity was 13.1 ± 1.8 cm/s. The Doppler estimated LV and RV stroke volume index were 75.6 ± 7.2 ml/

    Comparison of Hemodynamic Support by Impella vs. Peripheral Extra-Corporeal Membrane Oxygenation: A Porcine Model of Acute Myocardial Infarction

    No full text
    Objectives: Several mechanical circulatory assist devices are used to treat critically ill patients requiring hemodynamic support during post-myocardial infarction or cardiogenic shock. However, little guidance is available to choose an appropriate device to match a particular patient's needs. An increased understanding of hemodynamic effects of the pump systems and their impact on myocardial pre-/afterload might help to better understand their behavior in different clinical settings. Methods: This was an open-labeled, randomized acute animal experiment. A model of acute univentricular myocardial injury by temporary balloon occlusion was used. The experiment was carried out in 10 juveniles female Piétrain pigs. The animals were randomized to mechanical hemodynamic support either by peripheral veno-arterial (VA-)ECMO or Impella CP. Results: While both devices were able to provide flows above 3 L/min and maintain sufficient end-organ perfusion, support by Impella resulted in a significantly more pronounced immediate effect on myocardial unloading: At the onset of device support, the remaining native cardiac output was reduced by 23.5 ± 15.3% ECMO vs. 66.2 ± 36.2% (Impella, p = 0.021). Native stroke volume was significantly decreased by Impella support compared to ECMO, indicating less mechanical work being conducted by the Impella-supported hearts despite similar total assisted cardiac output. Conclusions: Peripheral VA-ECMO and the transaortic Impella pump resulted in contrasting hemodynamic fingerprints. Both devices provided sufficient hemodynamic support and reduce left ventricular end-diastolic pressure in the acute setting. Treatment with the Impella device resulted in a more effective volume unloading of the left ventricle. A significant reduction in myocardial oxygen consumption equivalent was achieved by both devices: The Impella device resulted in a left-shift of the pressure-volume loop and a decreased pressure-volume-area (PVA), while VA-ECMO increased PVA but decreased heart rate. These data highlight the importance of specifically targeting heart rate in the management of AMI patients on hemodynamic support.status: publishe

    Comparison between radial artery tonometry pulse analyzer and pulsed-Doppler echocardiography derived hemodynamic parameters in cardiac surgery patients: a pilot study

    No full text
    Background Bedside non-invasive techniques, such as radial artery tonometry, to estimate hemodynamic parameters have gained increased relevance as an attractive alternative and efficient method to measure hemodynamics in outpatient departments. For our pilot study, we sought to compare cardiac output (CO), and stroke volume (SV) estimated from a radial artery tonometry blood pressure pulse analyzer (BPPA) (DMP-Life, DAEYOMEDI Co., Gyeonggi-do, South Korea) to pulsed-wave Doppler (PWD) echocardiography derived parameters. Methods From January 2015 to December 2016, all patients scheduled for coronary artery bypass (CABG) surgery at our department were screened. Exclusion criteria were, inter alia, moderate to severe aortic- or Mitral valve disease and peripheral arterial disease (PAD) > stage II. One hundred and seven patients were included (mean age 66.1 ± 9.9, 15 females, mean BMI 27.2 ± 4.1 kg/m2). All patients had pre-operative transthoracic echocardiography (TTE). We measured the hemodynamic parameters with the BPPA from the radial artery, randomly before or after TTE. For the comparison between the measurement methods we used the Bland-Altman test and Pearson correlation. Results Mean TTE-CO was 5.1 ± 0.96 L/min, and the mean BPPA-CO was 5.2 ± 0.85 L/min. The Bland-Altman analysis for CO revealed a bias of −0.13 L/min and SD of 0.90 L/min with upper and lower limits of agreement of −1.91 and +1.64 L/min. The correlation of CO measurements between DMP-life and TTE was poor (r = 0.501, p < 0.0001). The mean TTE-SV was 71.3 ± 16.2 mL and the mean BPPA-SV was 73.8 ± 19.2 mL. SV measurements correlated very well between the two methods (r = 0.900, p < 0.0001). The Bland-Altman analysis for SV revealed a bias of −2.54 mL and SD of ±8.42 mL and upper and lower limits of agreement of −19.05 and +13.96 mL, respectively. Conclusion Our study shows for the first time that the DMP-life tonometry device measures SV and CO with reasonable accuracy and precision of agreement compared with TTE in preoperative cardiothoracic surgery patients. Tonometry BPPA are relatively quick and simple measuring devices, which facilitate the collection of cardiac and hemodynamic information. Further studies with a larger number of patients and with repeated measurements are in progress to test the reliability and repeatability of DMP-Life system

    Preoperative nutritional optimization and physical exercise for patients scheduled for elective implantation for a left-ventricular assist device — The PROPER-LVAD study

    No full text
    Background: Prehabilitation is gaining increasing interest and shows promising effects on short- and long-term outcomes among patients undergoing major surgery. The effect of multimodal, interdisciplinary prehabilitation has not yet been studied in patients with severe heart failure scheduled for the implantation of a left-ventricular assist device (LVAD). Methods: This randomized controlled multi-center study evaluates the effect of preoperative combined optimization of nutritional and functional status. Patients in the intervention group are prescribed daily in-bed cycling and oral nutrition supplements (ONS) from study inclusion until the day before LVAD-implantation. Patients in the control group receive standard of care treatment. The primary outcomes for the pilot study that involves 48 patients are safety (occurrence of adverse events), efficacy (group separation regarding the intake of macronutrients), feasibility of the trial protocol (compliance (percentage of received interventions) and confirmation of recruitment rates. Secondary outcomes include longitudinal measurements of muscle mass, muscle strength, physical function and quality of life, next to traditional clinical outcomes (30-day mortality, hospital and ICU length of stay, duration of mechanical ventilation and number of complications and infections). If the pilot study is successful, a larger confirmatory, international multicenter study is warranted
    corecore