175 research outputs found

    On the number of representations providing noiseless subsystems

    Full text link
    This paper studies the combinatoric structure of the set of all representations, up to equivalence, of a finite-dimensional semisimple Lie algebra. This has intrinsic interest as a previously unsolved problem in representation theory, and also has applications to the understanding of quantum decoherence. We prove that for Hilbert spaces of sufficiently high dimension, decoherence-free subspaces exist for almost all representations of the error algebra. For decoherence-free subsystems, we plot the function fd(n)f_d(n) which is the fraction of all dd-dimensional quantum systems which preserve nn bits of information through DF subsystems, and note that this function fits an inverse beta distribution. The mathematical tools which arise include techniques from classical number theory.Comment: 17 pp, 4 figs, accepted for Physical Review

    Identical Particles and Permutation Group

    Full text link
    Second quantization is revisited and creation and annihilation operators areshown to be related, on the same footing both to the algebra h(1), and to the superalgebra osp(1|2) that are shown to be both compatible with Bose and Fermi statistics. The two algebras are completely equivalent in the one-mode sector but, because of grading of osp(1|2), differ in the many-particle case. The same scheme is straightforwardly extended to the quantum case h_q(1) and osp_q(1|2).Comment: 8 pages, standard TEX, DFF 205/5/94 Firenz

    Q-derivatives, coherent states and squeezing

    Get PDF
    We show that the q-deformation of the Weyl-Heisenberg (q-WH) algebra naturally arises in discretized systems, coherent states, squeezed states and systems with periodic potential on the lattice. We incorporate the q-WH algebra into the theory of (entire) analytical functions, with applications to theta and Bloch functions

    Topological origin of the phase transition in a mean-field model

    Full text link
    We argue that the phase transition in the mean-field XY model is related to a particular change in the topology of its configuration space. The nature of this topological transition can be discussed on the basis of elementary Morse theory using the potential energy per particle V as a Morse function. The value of V where such a topological transition occurs equals the thermodynamic value of V at the phase transition and the number of (Morse) critical points grows very fast with the number of particles N. Furthermore, as in statistical mechanics, also in topology the way the thermodynamic limit is taken is crucial.Comment: REVTeX, 5 pages, with 1 eps figure included. Some changes in the text. To appear in Physical Review Letter

    Thermalization of a Brownian particle via coupling to low-dimensional chaos

    Full text link
    It is shown that a paradigm of classical statistical mechanics --- the thermalization of a Brownian particle --- has a low-dimensional, deterministic analogue: when a heavy, slow system is coupled to fast deterministic chaos, the resultant forces drive the slow degrees of freedom toward a state of statistical equilibrium with the fast degrees. This illustrates how concepts useful in statistical mechanics may apply in situations where low-dimensional chaos exists.Comment: Revtex, 11 pages, no figures

    A Topological String: The Rasetti-Regge Lagrangian, Topological Quantum Field Theory, and Vortices in Quantum Fluids

    Full text link
    The kinetic part of the Rasetti-Regge action I_{RR} for vortex lines is studied and links to string theory are made. It is shown that both I_{RR} and the Polyakov string action I_{Pol} can be constructed with the same field X^mu. Unlike I_{NG}, however, I_{RR} describes a Schwarz-type topological quantum field theory. Using generators of classical Lie algebras, I_{RR} is generalized to higher dimensions. In all dimensions, the momentum 1-form P constructed from the canonical momentum for the vortex belongs to the first cohomology class H^1(M,R^m) of the worldsheet M swept-out by the vortex line. The dynamics of the vortex line thus depend directly on the topology of M. For a vortex ring, the equations of motion reduce to the Serret-Frenet equations in R^3, and in higher dimensions they reduce to the Maurer-Cartan equations for so(m).Comment: To appear in Journal of Physics

    Comment on Vortex Mass and Quantum Tunneling of Vortices

    Full text link
    Vortex mass in Fermi superfluids and superconductors and its influence on quantum tunneling of vortices are discussed. The vortex mass is essentially enhanced due to the fermion zero modes in the core of the vortex: the bound states of the Bogoliubov qiasiparticles localized in the core. These bound states form the normal component which is nonzero even in the low temperature limit. In the collisionless regime ω0τ≫1\omega_0\tau \gg 1, the normal component trapped by the vortex is unbound from the normal component in the bulk superfluid/superconductors and adds to the inertial mass of the moving vortex. In the d-wave superconductors, the vortex mass has an additional factor (Bc2/B)1/2(B_{c2}/B)^{1/2} due to the gap nodes.Comment: 10 pages, no figures, version accepted in JETP Letter

    z=3 Lifshitz-Horava model and Fermi-point scenario of emergent gravity

    Full text link
    Recently Horava proposed a model for gravity which is described by the Einstein action in the infrared, but lacks the Lorentz invariance in the high-energy region where it experiences the anisotropic scaling. We test this proposal using two condensed matter examples of emergent gravity: acoustic gravity and gravity emerging in the fermionic systems with Fermi points. We suggest that quantum hydrodynamics, which together with the quantum gravity is the non-renormalizable theory, may exhibit the anisotropic scaling in agreement with the proposal. The Fermi point scenario of emergent general relativity demonstrates that under general conditions, the infrared Einstein action may be distorted, i.e. the Horava parameter λ\lambda is not necessarily equal 1 even in the low energy limit. The consistent theory requires special hierarchy of the ultra-violet energy scales and the fine-tuning mechanism for the Newton constant.Comment: 5 pages, no figures, JETP Letters style, version accepted in JETP Letter
    • …
    corecore