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Abstract

We show that the q-deformation of the Weyl-Heisenberg (q-WH) algebra naturally arises

in discretized systems, coherent states, squeezed states and systems with periodic potential

on the lattice. We incorporate the q-WH algebra into the theory of (entire) analytical

functions, with applications to theta and Bloch functions.

1 Introduction

The general properties of q-algebras [1] [2] have been widely studied, in particular in connection

with specific physical models. In this paper we will show [3] that the q-deformation of the Weyl-

Heisenberg (q-WH) algebra naturally arises in discretized quantum systems, coherent states,

squeezed coherent states and systems with periodic potential on the lattice.

q-algebras are deformations of enveloping algebras of Lie algebras and, like the latter, they

have Hopf algebras properties. The q-deformation of the Weyl-Heisenberg algebra _q-WH),

as well as the WH algebra, is not even a Hopf algebra; it has only the properties of a Hopf

superalgebra [4].

In our study of q-deformations we want to preserve the analytic structure of the correspond-

ing Lie algebras and therefore we need to operate in a frame where analyticity is ensured: this

is guaranteed by working in the Fock-Bargmann representation (FBR). In this representation

it is immediate to show that finite difference operators possess the algebraic structure of q-WH

algebra: As a result we recognize that a q-deformation of the algebra occurs whenever a finite

length is involved in a physical system, the q-parameter being related with the finite spacing.

The q-deformation is also expected in the presence of periodic conditions, since periodicity is a

special form of invariance under finite difference operators.

We use the well known mapping of the q-algebra into the universal enveloping algebra of

a corresponding Lie structure; to be specific, the mapping of finite difference operators into

functions of differential operators, which can be indeed achieved only by operating on C °o

functions, namely by working in the FBR.

We would like to stress that we succeed into incorporating q-deformation of the WH algebra

into the theory of (entire) analytical functions, with specific applications to theta functions and

to Bloch functions, a result which may deserve by itself much attention.
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In this paper we will use dimensionless units for all physical quantities.

2 Finite difference operators

The FBR operators, solution of the WH commutation relations [a,a t] = 1, [N,a] --- -a, [N,a t] -

a t , are [5]: d d

N --_ Z_zz , at--* z , a-+ d-'z" (2.1)

The Hilbert space _" is identified with the space of the entire analytical functions. Wave-

oo oo = _" (n • Z+) Thefunctions are expressed as ¢(z) = _,_=o c_,u,_(z), _.,_=o [c-I 2 1, u,_(z) - :_,_,

set {u,(z)} provides an orthonormal basis in _'. The finite difference operator Pq

f(qz)- f(z) f • _" (2.2)
Dq f(z) : (q-l) z '

with q -- c¢, _ • C, may be written on _" as Dq --- ((q- 1)z)-l(q _ - 1). D_ is the well known [6]

[7] [8] [9] q-derivative operator and, for q _ 1 (i.e. _ --_ 0), it reduces to the standard derivative.

We have the algebra

d g] : -D_ [z_ zl = z (2.3)ID_ , z] = qZ_ , [z_, , , ,

and observe that it is nothing but the q-deformation of the WH algebra. In fact, this can be

seen by introducing the following operators in the space 7

d
N--+ zw

dz ' _q ---* z , aq ---* Pq , (2.4)

where clearly _q = &q=l = at and litre_.1 aq = a. The quantum version of the Weyl-

Heisenberg algebra is thus realized in terms of these operators {aq, _q, N; q • C) with relations

[1] [21"
[g, aq] = -a_ , [N,_q] = _q , [aq,_q]- aqaq -_qaq = qN. (2.5)

Equivalently, by introducing _q-aqq-N/2,theq-WHalgebraeq._!isrewritteninthemorefamiliar form as [N, aq] = -aq , [g,a,l = aq , a,a, - q _a_a, =
The finite difference operator algebra (2.3) in the FBR thus provides a realization of the

q-WH algebra (2.5).

The notion of hermiticity associated with (2.5) has been studied in ref. [10] in connection

with the discussion of the squeezing of the generalized coherent states (GCS)q, defined in the

usual Fock space 5.

We note that the commutator [aq, hq] acts in _" as follows

[aq,&q]f(z) = q_ f(z) = f(qz) . (2.6)

In conclusion, the strict relation of the q-WH algebra with the finite difference operator

Dq (q ¢ 1) suggests that whenever one deals with some lattice or discrete structure, then a

deformation of the operator algebra acting on 7 should arise.
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3 Coherent states, theta functions and squeezing

We summarize now the relation of q-WH algebra with the customary coherent states (CS) Iz >

[5], with theta functions and with squeezing. Eq.(2.6) is the key relation to establish our results.

For sake of shortness we only report the relevant relations [3]:

< n[q_r[ z> = exp(-lz-_)un(qz) , (3.1)

< nl[aq,_q]lz> = exp(-(1-r/)(l+q)tZ-_l_) <nlP((q-1)z)[z> ' (3.2)

exp((1-1qJ2)lz-_)[aq,&q]lz > = .qz > , (3.3)

[aq,&q] f(z) = exp(-(1-g/)(l+q)_ -_) /9((1-?/)_)f(z), (3.4)

where P(z) denotes the usual CS generator.

We observe that [%,aq] acts as mapping operator from Iz > to lqz > up to a phase

factor. On the other hand, it acts the z-dilatation operator (z _ qz) in the space of entire

analytic functions. When q = e¢ , with f pure imaginary, f = iO, then [aq,_q] : z _ eiez ,

generates the U(1) group of phase transformations in the z-plane. We also observe that eqs.

(3.2) and (3.3) provide a non linear realization of the quantum algebra (2.5) in terms of a and

a t. Vice-versa, the nonlinear operator P(z) is represented by the linear form [aq, 5q].

In the framework of the formalism of CS on the von Neumann lattice L the defining functional

equation for the theta function is [5]

O_(z + zm) = exp(irF_(-m)) exp([_ _) exp(2mz) O_(z) , (3.5)

with zm = mxwx + m2w2 an arbitrary lattice vector and Fc(m) = rnlrn2 + mxq + m2e2 . A

solution of (3.5) can be expressed as

,.(,)= (,.o)

where f(z) is an arbitrary entire function such that the series (3.6) is converging.

To establish the relation between q-WH algebra and theta functions, we write q = qm = e;'"

with f,_ a vector on the lattice L and, by setting zm = (q,_ - 1)z, we have [3]

8,(q,.,.,z) = [aq,,,,hq,.] O,(z), (3.7)

[%=,5q,,,] O,(z) = exp(iTrF_(-m))exp(-(1-_/m)(l+qm )jz-_)O,(z) ,

O_(z) = _-_exp(-iTrFc(m))exp((1 ?:/m)(1 + qm) 1_ 2)- [aq,,,,aq,,,lf(z ) .

(3.s)

(3.9)
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Eqs. (3.7-9) show that theta functions span indeed a space of representations for the q-

algebra (2.5).

Finally, we study the relation of q-WH algebra with squeezing. Let _, = -i_ and [_., _,] = i,

over a Hilbert space of states _(z) identified with the space of entire analytic functions _.

I _ _ [a, a t] I. It is immediate toIntroduce the operators a -- _Z_(z 4- i_,) , a t _(_ - il5_) , =
observe that

--exp(  

= =

with S(f) denoting the squeezing generator [11], f = logq the squeezing parameter and _,(z)

the squeezed state. We therefore conclude that the operator [aq,hq] is the squeezing generator

for CS in the FBR, thus confirming the conjecture previously [10] formulated whereby q-groups

are the natural candidates to study the squeezed CS.

4 Quantum mechanics on the lattice

Our purpose is now to show that q-WH algebra is underlying the physics of lattice quantum

systems. Lattice Quantum Mechanics (LQM) is characterized by the E(2) commutator algebra,

which in the momentum space is written as [3] [121

• d , _,sin(k_)] = icos(k_),

[k,,cos(k_)] = [id cos(kE)] = -iEsin(k_) . (4.1)
dk'

[ib,,cos(k,)] = [,-' sin(k,),cos(k,)] = O .

where _, and ib,, denote the (one-dimensional) lattice position operator and the lattice momen-

tum operator, respectively (extension to higher dimensions is straightforward). The correspond-

ing uncertainty relations are

1 (<cosCkE)>_) ' (4.2)

A_C_,)A2CcosCk,)) > _(_Z<sin(kE))_) , (4.3)

where A_(/i) = (/I 2> - (/I) 2 with = (_4) = f dkrP'(k)_4_P(k). We observe that these relations

go, in the continuum limit _ --. O, to the usual ones. In this connection we observe that the

continuum limit is, in fact, an isometric and conform_l mapping of the torus on the plane.

Following the usual procedure [13], the states minimizing the uncertainties (4.2) and (4.3)

are found to be, in momentum space

ffs(k) = G-_ exp ['_cos(_k)- fA_k] (4.4)
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The normalization constant G is given by G = _I0(2_),/0 denoting the modified Bessel function

of the first kind of order 0. We adopted the notation: A = _-1, ,_ = _E-2 _ _. (_,) "b i_(p, / ,

and "y is connected with the mean square roots of position and momentum.

In the continuum limit, i.e. for small e, one recovers in the space of configurations,

_(z) = (.7_r)-_ exp {- [(2_/)-1(z -- (_;/) _ + i(_l(x -- (_;))] } , which is the minimum uncertainty

wave-function given by SchrSdinger [14]. The @(k)'s are the lattice coherent states.

In order to see the relation with the q-algebra we consider the conformal image _ of the

Hilbert space obtained upon introducing the variable z = e/÷ (¢ = kE , -Tr < _b < It), such that
• d

-s_ = -ie_ = ez_ . The functions in _ are assumed to be entire square-integrable analytic
functions. We have

L,f(¢) = -i_--_f(¢)--zd'f(z)- Nf(z) , f E _ , (4.5)

f(¢ + e) = eiELsf(¢) = qN'f(Z) = f(qz) , (4.6)

with q = e i'. The realization (2.4) has been adopted in the FBR, with z restricted t5 the unit

circle. The E(2) algebra (4.1) is realized by

[L1, Ls]'f (z) - -i L,'f (z) ,

with f E _, and the identifications

[L_,La]'f(z) = iLl'f(z), [L,,L2]'f(z) = O, (4.7)

z+_ z-_ d

L1- 2 , L2- 2i , L3=Z_z z, L+=z, L_ =_. (4.8)

One can see that [aq,aq] is nothing but the group element e_'L_ of E(2). The algebraic

structure of LQM is thus intimately related with the q-WH algebra, the deformation parameter

q being determined by the discrete lattice length e = -ilog q.

We finally note that z'* = e_n_, n integer, is the eigenfunction of Ls associated with the

eigenvalue n of the number operator in the FBR: Lsz'* = Nz n = nz n .

The functions z = e/_ play also a r61e in the Bloch functions theory. Suppose we have a

periodic potential V(xn) = V(xn + e) on the lattice. Bloch theorem ensures the existence of

solutions of the related SchrSdinger equation of the form ¢(x_) = e+'_z"v_(x,_), with v_(z,) =

vk(x,, + e). ¢(x,) is the Bloch function. Let us limit ourself to consider for simplicity the plus

sign in the exponentials. ¢(x_) has the property

(4.9)

The choice of the variable z = e ik_ turns out to be natural in the case of periodic potentials:

(4.10)

Since z" = (z,) k and qN(z,_)k = (qzn)_ = e,kd,+,) = z,+,,

(4.11)

which shows that the Bloch functions provide indeed a representation for the q-WH algebra.
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