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Abstract

We show that the g-deformation of the Weyl-Heisenberg (g-WH) algebra naturally arises
in discretized systems, coherent states, squeezed states and systems with periodic potential
on the lattice. We incorporate the ¢-WH algebra into the theory of (entire) analytical
functions, with applications to theta and Bloch functions.

1 Introduction

The general properties of g-algebras [1] [2] have been widely studied, in particular in connection
with specific physical models. In this paper we will show [3] that the g-deformation of the Weyl-
Heisenberg (¢-WH) algebra naturally arises in discretized quantum systems, coherent states,
squeezed coherent states and systems with periodic potential on the lattice.

g-algebras are deformations of enveloping algebras of Lie algebras and, like the latter, they
have Hopf algebras properties. The g-deformation of the Weyl-Heisenberg algebra (¢-WH),
as well as the WH algebra, is not even a Hopf algebra; it has only the properties of a Hopf
superalgebra [4].

In our study of g-deformations we want to preserve the analytic structure of the correspond-
ing Lie algebras and therefore we need to operate in a frame where analyticity is ensured: this
is guaranteed by working in the Fock-Bargmann representation (FBR). In this representation
it is immediate to show that finite difference operators possess the algebraic structure of ¢-WH
algebra: As a result we recognize that a g-deformation of the algebra occurs whenever a finite
length is involved in a physical system, the g-parameter being related with the finite spacing.
The g-deformation is also expected in the presence of periodic conditions, since periodicity is a
special form of invariance under finite difference operators.

We use the well known mapping of the g-algebra into the universal enveloping algebra of
a corresponding Lie structure; to be specific, the mapping of finite difference operators into
functions of differential operators, which can be indeed achieved only by operating on C®
functions, namely by working in the FBR.

We would like to stress that we succeed into incorporating g-deformation of the WH algebra
into the theory of (entire) analytical functions, with specific applications to theta functions and
to Bloch functions, a result which may deserve by itself much attention.
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In this paper we will use dimensionless units for all physical quantities.

2 Finite difference operators

The FBR operators, solution of the WH commutation relations [a, al] = 1,[N,a] = —a,[N,al] =
a' , are [5]: 4
N—vzz;, ad — z, @ = - (2.1)

The Hilbert space ¥ is identified with the space of the entire analytical functions. Wave-
oo

functions are expressed as ¥(2) = X2, caln(2), Lnlo len? =1, un(2) = —\‘/—;ﬁ, (n€ Z;) . The
set {un(2)} provides an orthonormal basis in F. The finite difference operator D,

f(gz2) - f(2)
(g-1) 2
with g = €f, ¢ € C, may be writtenon ¥ as D; = ((¢— 1)z)7! (q‘f? —1). D, is the well known [6]

[7] (8] [9] g-derivative operator and, for ¢ — 1 (i.e. ¢ — 0), it reduces to the standard derivative.
We have the algebra

D, f(2) = , feF, (2.2)

2l d d
D , 2 = ¢4, [ZE;’ D) = =D, [z(_i;a 2] = z, (2.3)
and observe that it is nothing but the g-deformation of the WH algebra. In fact, this can be

seen by introducing the following operators in the space ¥

d
N— 2z, ag — 2z, a — D, (2.4)
where clearly &, = &= = ' and limy; ¢ = a The quantum version of the Weyl-

Heisenberg algebra is thus realized in terms of these operators {a,,8,, N; g € C} with relations
1] {2]:
[N,ag) = —ag, [N,&] =34, lag, 8q] = ag8q — dqaq = q". (2.5)

Equivalently, by introducing a, = a,q " /2 the ¢-WH algebra eq. (2.5) is rewritten in the more
familiar form as [N,a,] = —a; , [N,8] =8, , .8, — g 3a,q, = qiv.

The finite difference operator algebra (2.3) in the FBR thus provides a realization of the
g-WH algebra (2.5).

The notion of hermiticity associated with (2.5) has been studied in ref. [10] in connection

with the discussion of the squeezing of the generalized coherent states (GCS),, defined in the
usual Fock space 7.

We note that the commutator [a,,d,] acts in 7 as follows

lagdg)f(2) = % f(z) = [(g2) . (2.6)

In conclusion, the strict relation of the ¢g-WH algebra with the finite difference operator
D, (¢ # 1) suggests that whenever one deals with some lattice or discrete structure, then a
deformation of the operator algebra acting on 7 should arise.
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3 Coherent states, theta functions and squeezing

We summarize now the relation of ¢-WH algebra with the customary coherent states (CS) |z >
[5], with theta functions and with squeezing. Eq.(2.6) is the key relation to establish our results.
For sake of shortness we only report the relevant relations [3]:

<nlg|z> = exp (“lle) un(g?) , (3.1)

< nllag,a,)|z > = exp(—(l ~g)(1+ q)%ﬁ) <nlD((g - 1)2)|z >, (3.2)
exo((1 ~ 1012 ) fap iz > = Joz >, (3.3)

2080] 1) = exp(~(- a1+ E) D1~ 9)2) 42, (5.9

where D(z) denotes the usual CS generator.

We observe that [a,,d,] acts as mapping operator from |z > to |gz > up to a phase
factor. On the other hand, it acts the z-dilatation operator (2 — ¢z) in the space of entire
analytic functions. When ¢ = ef, with ¢ pure imaginary, ¢ = 16, then [a,,&,] : 2 — €z,
generates the U(1) group of phase transformations in the z-plane. We also observe that eqs.
(3.2) and (3.3) provide a non linear realization of the quantum algebra (2.5) in terms of a and
a!. Vice-versa, the nonlinear operator D(z) is represented by the linear form [aq, &q)-

In the framework of the formalism of CS on the von Neumann lattice L the defining functional
equation for the theta function is [5]

2
(2 + zm) = exp(irF.(—m)) exp(%‘—) exp(Zmz) 0.(2) , (3.5)
with 2, = miw; + maw, an arbitrary lattice vector and F, (m) = mymg + mie; + moe; . A
solution of (3.5) can be expressed as
inF, |2m [?
b(2) = D eimFm) exp(— 5 )exp(—ém 2)f(z2), (3.6)

where f(2) is an arbitrary entire function such that the series (3.6) is converging.
To establish the relation between ¢-WH algebra and theta functions, we write ¢ = ¢,,, = '™ |
with ¢, a vector on the lattice L and, by setting 2,, = (¢,, — 1)z, we have 13]

0(gmz) = [aqm’&qm] f.(2) , (3.7)
nm ] 0(2) = explinF(-m) exp(~(1 - a1+ ) Loy, (39
0.(2) = Z exp(—im F(m)) eXP((l = qm)(1 + gm) ]jz)[aqm 28,1 f(2) . (3.9)
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Eqs. (3.7-9) show that theta functions span indeed a space of representations for the ¢-
algebra (2.5).

Finally, we study the relation of ¢-WH algebra with squeezing. Let p, = —-i2 and [2,p.] =1,
over a Hilbert space of states ¥(z) identified with the space of entire analytic functions ¥.
Introduce the operators a = J=(2 + ip.) , at = 7‘;(2 —ip,) , |@,a'] = I. It is immediate to
observe that

lag,dq) ¥(2) = exp(gz%) Y(z) = %exp(%(oz2 - a'z)) P(2) (3.10)

1 - 1
= —=5()¥(2) = —~¥ulz
/e (¢)¥(2) 7a o(2)
with § (¢) denoting the squeezing generator [11], ¢ = log q the squeezing parameter and v,(2)
the squeezed state. We therefore conclude that the operator [a,, 44| ts the squeezing generator
for CS in the FBR, thus confirming the conjecture previously [10] formulated whereby g-groups
are the natural candidates to study the squeezed CS.

4 Quantum mechanics on the lattice

Our purpose is now to show that ¢-WH algebra is underlying the physics of lattice quantum
systems. Lattice Quantum Mechanics (LQM) is characterized by the E(2) commutator algebra,
which in the momentum space is written as (3] {12

[Ze, D] = [i%,e'l sin(ke)] = 1 cos(ke) ,

[£e,cos(ke)] = [i;jdz,cos(ke)] = —1esin(ke) . (4.1)

[Pe, cos(ke)] = [e"l sin(ke),cos(ke)] = 0.
where %, and p,, denote the (one-dimensional) lattice position operator and the lattice momen-

tum operator, respectively {extension to higher dimensions is straightforward). The correspond-
ing uncertainty relations are

AY2) A (Pe) 2 ((Cos(k€)>2) ) (4.2)

]

AY(z,) A*(cos(ke)) > ((sin(ke))?) , (4.3)
where A?(A) = (A?) — (;4)2 with = (A) = [dk¥*(k)A¥(k). We observe that these relations
go, in the continuum limit ¢ — 0, to the usual ones. In this connection we observe that the
continuum limit is, in fact, an isometric and conformal mapping of the torus on the plane.

Following the usual procedure [13], the states minimizing the uncertainties (4.2) and (4.3)
are found to be, in momentum space

o |

V(k) = G5 exp ["7 cos(ek) — z';\ek] . (4.4)
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The normalization constant G is given by G = ""—”10(2‘7) , Io denoting the modified Bessel function
of the first kind of order 0. We adopted the notation: A = Ae™!, 57 = v¢7 2, A = (Z,) + i7(p) ,
and ~ is connected with the mean square roots of position and momentum.

In the continuum limit, i.e. for small ¢, one recovers in the space of configurations,
¥(z) = ('77r)'% exp {— [(2'7)"1(1: —(2))? +i(p)(z — (:?:))]} , which is the minimum uncertainty
wave-function given by Schrédinger [14]. The ¥(k)’s are the lattice coherent states.

In order to see the relation with the g-algebra we consider the conformal image ¥ of the
Hilbert space obtained upon introducing the variable z = et (p=ke, - 1< ¢ < 7), such that
—id;",c = —ieﬁ = ezﬁ . The functions in ¥ are assumed to be entire square-integrable analytic
functions. We have

Lef(#) = ~igg($) = 25 1() = N7(2) , Fe X , (45

f(@+€) =" f($) =" (2) = flaz) , (4.6)
with ¢ = €*. The realization (2.4) has been adopted in the FBR, with z restricted t6 the unit
circle. The E(2) algebra (4.1) is realized by

(L1, Ls)f(2) = —iLyf(2) , [L2,Ls|f(2) = iL.f(2), [L1,La)f(2) =0, (4.7)

with _~f € X, and the identifications

LR S S S L N (4.8)

L, = , -
1 2 21 dz

One can see that [ag,d,] is nothing but the group element e*l* of E(2). The algebraic
structure of LQM is thus intimately related with the ¢-WH algebra, the deformation parameter
q being determined by the discrete lattice length ¢ = —tlog gq.

We finally note that z” = ¢, n integer, is the eigenfunction of Ls associated with the
eigenvalue n of the number operator in the FBR: L3z" = Nz" = nz" .

The functions z = €'¢ play also a rdle in the Bloch functions theory. Suppose we have a
periodic potential V(z,) = V(z, + €) on the lattice. Bloch theorem ensures the existence of
solutions of the related Schrodinger equation of the form ¥(z,) = e****y,(z,), with vi(z,) =

vk(Zn + €). ¥(z,) is the Bloch function. Let us limit ourself to consider for simplicity the plus
sign in the exponentials. ¢(z,) has the property

V(zn + €) = e*yY(z,) = 2¢(z,) . (4.9)
The choice of the variable z = e'*¢ turns out to be natural in the case of periodic potentials:
Y(zn) = 2"ve(Zs) , ¥(zn + €) = 2" ui(z,) . (4.10)
Since 2" = (z,)* and ¢V (z,)* = (gz,)* = e'ke(nt1) = pn+1,
W(Zn + €) = [ag,8)(22) vi(zn) = [ag,d,)¥(z,) , (4.11)

which shows that the Bloch functions provide indeed a representation for the ¢-WH algebra.

43



References
(1] L.C Biedenharn, J. Phys. A22, 117 (1989).
[2] A.J. Macfarlane, J. Phys. A22, 4581 (1989).

(3] E.Celeghini, S.De Martino, S.De Siena, M. Rasetti, and G.Vitiello, Mod. Phys. Lett B,
(1993), to be published; Florence University Preprint DFF188/9/93.

[4] E.Celeghini, T.D.Palev and M.Tarlini, Mod. Phys. Lett B5, 187 (1991).

[5] A.Perelemov, Generalized Coherent States and Their Applications, (Springer-Verlag, Berlin
Heidelberg, 1986).

[6] L.C. Biedenharn, and M.A. Lohe , Comm. Math. Phys. 146, 483 (1992).
[7] F.H. Jackson, Messenger Math. 38, 57 (1909).
(8] T.H. Koornwinder, Nederl. Acad. Wetensch. Proc. Ser. A92, 97 (1989).
[9] D. I. Fivel, J. Phys. A24, 3575 (1991).
[10] E. Celeghini, M. Rasetti, and G. Vitiello, Phys. Rev. Lett. 66, 2056 (1991).
[11] H.P. Yuen, Phys. Rev. A13, 2226 (1976).

(12] F.Guerra, Statistical Mechanics Methods in Quantum Field Theory, Proceedings of the
International School of Mathematical Physics, G. Gallavotti ed., Universita’ di Camerino
(1974).

(13] P.Carruthers, and M.N. Nieto, Rev. Mod. Phys. 40, 411 (1968).

[14] E.Schrédinger, Naturwissenschaften 14, 664 (1926).

44



