18 research outputs found

    A robust, high-flux source of laser-cooled ytterbium atoms

    Get PDF
    We present a high-flux source of cold ytterbium atoms that is robust, lightweight and low-maintenance. Our apparatus delivers 1 × 109 atoms s−1 into a 3D magneto-optical trap without requiring water cooling or high current power supplies. We achieve this by employing a Zeeman slower and a 2D magneto-optical trap fully based on permanent magnets in Halbach configurations. This strategy minimizes mechanical complexity, stray magnetic fields, and heat production while requiring little to no maintenance, making it applicable to both embedded systems that seek to minimize electrical power consumption, and large scale experiments to reduce the complexity of their subsystems

    Red- and blue-detuned magneto-optical trapping with liquid crystal variable retarders

    Get PDF
    We exploit red- and blue-detuned magneto-optical trapping (MOT) of 87Rb benefitting from a simplified setup and a novel approach based on liquid crystal variable retarders (LCVR). To maintain the trapping forces when switching from a red- to a blue-detuned MOT, the handedness of the circular polarization of the cooling beams needs to be reversed. LCVRs allow fast polarization control and represent compact, simple, and cost-efficient components, which can easily be implemented in existing laser systems. This way, we achieve a blue-detuned type-II MOT for 8.7 × 108 atoms of 87Rb with sub-Doppler temperatures of 44 ÎŒK well below the temperatures reached in a conventional 87Rb type-I MOT. The phase space density is increased by more than two orders of magnitude compared to the standard red-detuned type-I MOT. The setup can readily be transferred to any other systems working with 87Rb

    Inertial sensing with quantum gases: a comparative performance study of condensed versus thermal sources for atom interferometry

    Get PDF
    Abstract: Quantum sensors based on light pulse atom interferometers allow for measurements of inertial and electromagnetic forces such as the accurate determination of fundamental constants as the fine structure constant or testing foundational laws of modern physics as the equivalence principle. These schemes unfold their full performance when large interrogation times and/or large momentum transfer can be implemented. In this article, we demonstrate how interferometry can benefit from the use of Bose–Einstein condensed sources when the state of the art is challenged. We contrast systematic and statistical effects induced by Bose–Einstein condensed sources with thermal sources in three exemplary science cases of Earth- and space-based sensors. Graphic abstract: [Figure not available: see fulltext.] © 2021, The Author(s)

    Atomic source selection in space-borne gravitational wave detection

    Get PDF
    Recent proposals for space-borne gravitational wave detectors based on atom interferometry rely on extremely narrow single-photon transition lines as featured by alkaline-earth metals or atomic species with similar electronic configuration. Despite their similarity, these species differ in key parameters such as abundance of isotopes, atomic flux, density and temperature regimes, achievable expansion rates, density limitations set by interactions, as well as technological and operational requirements. In this study, we compare viable candidates for gravitational wave detection with atom interferometry, contrast the most promising atomic species, identify the relevant technological milestones and investigate potential source concepts towards a future gravitational wave detector in space

    ÎČ\beta-BaB2_2O4_4 deep UV monolithic walk-off compensating tandem

    Full text link
    The generation of watt-level cw narrow-linewidth sources at specific deep UV wavelengths corresponding to atomic cooling transitions usually employs external cavity-enhanced second-harmonic generation (SHG) of moderate-power visible lasers in birefringent materials. In this work, we investigate a novel approach to cw deep-UV generation by employing the low-loss BBO in a monolithic walkoff-compensating structure [Zondy {\it{et al}}, J. Opt. Soc. Am. B {\bf{20}} (2003) 1675] to simultaneously enhance the effective nonlinear coefficient while minimizing the UV beam ellipticity under tight focusing. As a preliminary step to cavity-enhanced operation, and in order to apprehend the design difficulties stemming from the extremely low acceptance angle of BBO, we investigate and analyze the single-pass performance of a Lc=8L_c=8 mm monolithic walk-off compensating structure made of 2 optically-contacted BBO plates cut for type-I critically phase-matched SHG of a cw λ=570.4\lambda=570.4nm dye laser. As compared with a bulk crystal of identical length, a sharp UV efficiency enhancement factor of 1.65 has been evidenced with the tandem structure, but at ∌−1\sim-1nm from the targeted fundamental wavelength, highlighting the sensitivity of this technique when applied to a highly birefringent material such as BBO. Solutions to angle cut residual errors are identified so as to match accurately more complex periodic-tandem structure performance to any target UV wavelength, opening the prospect for high-power, good beam quality deep UV cw laser sources for atom cooling and trapping.Comment: 21 pages, 8 figures, to appear in Opt. Commu

    A scalable high-performance magnetic shield for very long baseline atom interferometry

    Get PDF
    We report on the design, construction, and characterization of a 10 m-long high-performance magnetic shield for very long baseline atom interferometry. We achieve residual fields below 4 nT and longitudinal inhomogeneities below 2.5 nT/m over 8 m along the longitudinal direction. Our modular design can be extended to longer baselines without compromising the shielding performance. Such a setup constrains biases associated with magnetic field gradients to the sub-pm/s2 level in atomic matterwave accelerometry with rubidium atoms and paves the way toward tests of the universality of free fall with atomic test masses beyond the 10-13 level. © 2020 Author(s)

    Gravitational-wave Detection With Matter-wave Interferometers Based On Standing Light Waves

    Full text link
    We study the possibility of detecting gravitational-waves with matter-wave interferometers, where atom beams are split, deflected and recombined totally by standing light waves. Our calculation shows that the phase shift is dominated by terms proportional to the time derivative of the gravitational wave amplitude. Taking into account future improvements on current technologies, it is promising to build a matter-wave interferometer detector with desired sensitivity.Comment: 7 pages, 3 figures. To be published in General Relativity and Gravitatio

    T 3 Stern-Gerlach matter-wave interferometer

    Get PDF
    The article of record as published may be found at https://doi.org/10.1103/PhysRevLett.123.083601We present a unique matter-wave interferometer whose phase scales with the cube of the time the atom spends in the interferometer. Our scheme is based on a full-loop Stern-Gerlach interferometer incorporating four magnetic field gradient pulses to create a state-dependent force. In contrast to typical atom interferometers which make use of laser light for the splitting and recombination of the wave packets, this realization uses no light and can therefore serve as a high-precision surface probe at very close distances.This work is funded in part by the Israel Science Foundation (grant No. 856/18) and the German- Israeli DIP projects (Hybrid devices: FO 703/2-1, AR 924/1-1, DU 1086/2-1) supported by the DFG. We also acknowledge support from the Israeli Council for Higher Education (Israel). M.A.E. is thankful to the Center for Integrated Quantum Science and Technology (IQST ) for its generous financial support. W.P.S. is grateful to Texas A&M University for a Faculty Fellowship at the Hagler Institute for Advanced Study at Texas A&M University, and to Texas A&M AgriLife Research for the support of this work. The research of the IQST is financially supported by the Ministry of Science, Research and Arts, Baden-Wurttemberg. F.A.N. is grateful for a generous Laboratory University Collaboration Initiative (LUCI) grant from the Office of the Secretary of Defense.This work is funded in part by the Israel Science Foundation (grant No. 856/18) and the German- Israeli DIP projects (Hybrid devices: FO 703/2-1, AR 924/1-1, DU 1086/2-1) supported by the DFG. We also acknowledge support from the Israeli Council for Higher Education (Israel). M.A.E. is thankful to the Center for Integrated Quantum Science and Technology (IQST ) for its generous financial support. W.P.S. is grateful to Texas A&M University for a Faculty Fellowship at the Hagler Institute for Advanced Study at Texas A&M University, and to Texas A&M AgriLife Research for the support of this work. The research of the IQST is financially supported by the Ministry of Science, Research and Arts, Baden-Wurttemberg. F.A.N. is grateful for a generous Laboratory University Collaboration Initiative (LUCI) grant from the Office of the Secretary of Defense

    Atom gratings produced by large angle atom beam splitters

    Get PDF
    An asymptotic theory of atom scattering by large amplitude periodic potentials is developed in the Raman-Nath approximation. The atom grating profile arising after scattering is evaluated in the Fresnel zone for triangular, sinusoidal, magneto-optical, and bichromatic field potentials. It is shown that, owing to the scattering in these potentials, two \QTR{em}{groups} of momentum states are produced rather than two distinct momentum components. The corresponding spatial density profile is calculated and found to differ significantly from a pure sinusoid.Comment: 16 pages, 7 figure

    ELGAR - A European Laboratory for Gravitation and Atom-interferometric Research

    Get PDF
    Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtain a more complete picture of cosmic events and mechanisms. This is a unique and entirely new opportunity for the future of astronomy, the success of which depends upon the decisions being made on existing and new infrastructures. The prospect of combining observations from the future space-based instrument LISA together with third generation ground based detectors will open the way toward multi-band GW astronomy, but will leave the infrasound (0.1–10 Hz) band uncovered. GW detectors based on matter wave interferometry promise to fill such a sensitivity gap. We propose the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an underground infrastructure based on the latest progress in atomic physics, to study space–time and gravitation with the primary goal of detecting GWs in the infrasound band. ELGAR will directly inherit from large research facilities now being built in Europe for the study of large scale atom interferometry and will drive new pan-European synergies from top research centers developing quantum sensors. ELGAR will measure GW radiation in the infrasound band with a peak strain sensitivity of 3.3 x 10 [hoch]-20 / [Wurzel] Hz at 1.7 Hz. The antenna will have an impact on diverse fundamental and applied research fields beyond GW astronomy, including gravitation, general relativity, and geology
    corecore