826 research outputs found

    Quantum Monte Carlo calculations of H2_2 dissociation on Si(001)

    Get PDF
    We present quantum Monte Carlo calculations for various reaction pathways of H2_2 with Si(001), using large model clusters of the surface. We obtain reaction energies and energy barriers noticeably higher than those from approximate exchange-correlation functionals. In improvement over previous studies, our adsorption barriers closely agree with experimental data. For desorption, the calculations give barriers for conventional pathways in excess of the presently accepted experimental value, and pinpoint the role of coverage effects and desorption from steps.Comment: 4 pages, 1 figur

    Near-field imaging of optical antenna modes in the mid-infrared

    Get PDF
    Optical antennas can enhance the coupling between free-space propagating light and the localized excitation of nanoscopic light emitters or receivers, thus forming the basis of many nanophotonic applications. Their functionality relies on an understanding of the relationship between the geometric parameters and the resulting near-field antenna modes. Using scattering-type scanning near-field optical microscopy (s-SNOM) with interferometric homodyne detection, we investigate the resonances of linear Au wire antennas designed for the mid-IR by probing specific vector near-field components. A simple effective wavelength scaling is observed for single wires with lambda(eff) = lambda/(2.0 +/- 0.2), specific to the geometric and material parameters used. The disruption of the coherent current oscillation by introducing a gap gives rise to an effective multipolar mode for the two near-field coupled segments. Using antenna theory and numerical electrodynamics simulations two distinct coupling regimes are considered that scale with gap width or reactive near-field decay length, respectively. The results emphasize the distinct antenna behavior at optical frequencies compared to impedance matched radio frequency (RF) antennas and provide experimental confirmation of theoretically predicted scaling laws at optical frequencies

    Statistical modeling of ground motion relations for seismic hazard analysis

    Full text link
    We introduce a new approach for ground motion relations (GMR) in the probabilistic seismic hazard analysis (PSHA), being influenced by the extreme value theory of mathematical statistics. Therein, we understand a GMR as a random function. We derive mathematically the principle of area-equivalence; wherein two alternative GMRs have an equivalent influence on the hazard if these GMRs have equivalent area functions. This includes local biases. An interpretation of the difference between these GMRs (an actual and a modeled one) as a random component leads to a general overestimation of residual variance and hazard. Beside this, we discuss important aspects of classical approaches and discover discrepancies with the state of the art of stochastics and statistics (model selection and significance, test of distribution assumptions, extreme value statistics). We criticize especially the assumption of logarithmic normally distributed residuals of maxima like the peak ground acceleration (PGA). The natural distribution of its individual random component (equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized extreme value. We show by numerical researches that the actual distribution can be hidden and a wrong distribution assumption can influence the PSHA negatively as the negligence of area equivalence does. Finally, we suggest an estimation concept for GMRs of PSHA with a regression-free variance estimation of the individual random component. We demonstrate the advantages of event-specific GMRs by analyzing data sets from the PEER strong motion database and estimate event-specific GMRs. Therein, the majority of the best models base on an anisotropic point source approach. The residual variance of logarithmized PGA is significantly smaller than in previous models. We validate the estimations for the event with the largest sample by empirical area functions. etc

    Minimally invasive reconstruction of lateral tibial plateau fractures using the jail technique: a biomechanical study

    Full text link
    Background: This study described a novel, minimally invasive reconstruction technique of lateral tibial plateau fractures using a three-screw jail technique and compared it to a conventional two-screw osteosynthesis technique. The benefit of an additional screw implanted in the proximal tibia from the anterior at an angle of 90° below the conventional two-screw reconstruction after lateral tibial plateau fracture was evaluated. This new method was called the jail technique. Methods: The two reconstruction techniques were tested using a porcine model (n = 40). Fracture was simulated using a defined osteotomy of the lateral tibial plateau. Load-to-failure and multiple cyclic loading tests were conducted using a material testing machine. Twenty tibias were used for each reconstruction technique, ten of which were loaded in a load-to-failure protocol and ten cyclically loaded (5000 times) between 200 and 1000 N using a ramp protocol. Displacement, stiffness and yield load were determined from the resulting load displacement curve. Failure was macroscopically documented. Results: In the load-to-failure testing, the jail technique showed a significantly higher mean maximum load (2275.9 N) in comparison to the conventional reconstruction (1796.5 N, p  0.05). In cyclic testing, the jail technique also showed better trends in displacement that were not statistically significant. Failure modes showed a tendency of screws cutting through the bone (cut-out) in the conventional reconstruction. No cut-out but a bending of the lag screws at the site of the additional third screw was observed in the jail technique. Conclusions: The results of this study indicate that the jail and the conventional technique have seemingly similar biomechanical properties. This suggests that the jail technique may be a feasible alternative to conventional screw osteosynthesis in the minimally invasive reconstruction of lateral tibial plateau fractures. A potential advantage of the jail technique is the prevention of screw cut-outs through the cancellous bone.<br

    Implant augmentation: Adding bone cement to improve the treatment of osteoporotic distal femur fractures:A biomechanical study using human cadaver bones

    Full text link
    The increasing problems in the field of osteoporotic fracture fixation results in specialized implants as well as new operation methods, for example, implant augmentation with bone cement. The aim of this study was to determine the biomechanical impact of augmentation in the treatment of osteoporotic distal femur fractures. Seven pairs of osteoporotic fresh frozen distal femora were randomly assigned to either an augmented or nonaugmented group. In both groups, an Orthopaedic Trauma Association 33 A3 fractures was fixed using the locking compression plate distal femur and cannulated and perforated screws. In the augmented group, additionally, 1 mL of polymethylmethacrylate cement was injected through the screw. Prior to mechanical testing, bone mineral density (BMD) and local bone strength were determined. Mechanical testing was performed by cyclic axial loading (100 N to 750 N + 0.05N/cycle) using a servo-hydraulic testing machine. As a result, the BMD as well as the axial stiffness did not significantly differ between the groups. The number of cycles to failure was significantly higher in the augmented group with the BMD as a significant covariate. In conclusion, cement augmentation can significantly improve implant anchorage in plating of osteoporotic distal femur fractures

    Characterizing the Adaptive Optics Off-Axis Point-Spread Function - I: A Semi-Empirical Method for Use in Natural-Guide-Star Observations

    Full text link
    Even though the technology of adaptive optics (AO) is rapidly maturing, calibration of the resulting images remains a major challenge. The AO point-spread function (PSF) changes quickly both in time and position on the sky. In a typical observation the star used for guiding will be separated from the scientific target by 10" to 30". This is sufficient separation to render images of the guide star by themselves nearly useless in characterizing the PSF at the off-axis target position. A semi-empirical technique is described that improves the determination of the AO off-axis PSF. The method uses calibration images of dense star fields to determine the change in PSF with field position. It then uses this information to correct contemporaneous images of the guide star to produce a PSF that is more accurate for both the target position and the time of a scientific observation. We report on tests of the method using natural-guide-star AO systems on the Canada-France-Hawaii Telescope and Lick Observatory Shane Telescope, augmented by simple atmospheric computer simulations. At 25" off-axis, predicting the PSF full width at half maximum using only information about the guide star results in an error of 60%. Using an image of a dense star field lowers this error to 33%, and our method, which also folds in information about the on-axis PSF, further decreases the error to 19%.Comment: 29 pages, 9 figures, accepted for publication in the PAS
    • …
    corecore