1,210 research outputs found

    Gauge Invariant Treatment of the Energy Carried by a Gravitational Wave

    Full text link
    Even though the energy carried by a gravitational wave is not itself gauge invariant, the interaction with a gravitational antenna of the gravitational wave which carries that energy is. It therefore has to be possible to make some statements which involve the energy which are in fact gauge invariant, and it is the objective of this paper to provide them. In order to develop a gauge invariant treatment of the issues involved, we construct a specific action for gravitational fluctuations which is gauge invariant to second perturbative order. Then, via variation of this action, we obtain an energy-momentum tensor for perturbative gravitational fluctuations around a general curved background whose covariant conservation condition is also fully gauge invariant to second order. Contraction of this energy-momentum tensor with a Killing vector of the background conveniently allows us to convert this covariant conservation condition into an ordinary conservation condition which is also gauge invariant through second order. Then, via spatial integration we are able to obtain a relation involving the time derivative of the total energy of the fluctuation and its asymptotic spatial momentum flux which is also completely gauge invariant through second order. It is only in making the simplification of setting the asymptotic momentum flux to zero that one would actually lose manifest gauge invariance, with only invariance under those particular gauge transformations which leave the asymptotic momentum flux zero then remaining. However, if one works in an arbitrary gauge where the asymptotic momentum flux is non-zero, the gravitational wave will then deliver both energy and momentum to a gravitational antenna in a completely gauge invariant manner, no matter how badly behaved at infinity the gauge function might be.Comment: 13 pages, revtex4. Final version. To appear in Phys. Rev.

    Future deceleration due to cosmic backreaction in presence of the event horizon

    Full text link
    The present acceleration of the universe leads to the formation of a cosmological future event horizon. We explore the effects of the event horizon on cosmological backreaction due to inhomogeneities in the universe. Beginning from the onset of the present accelerated era, we show that backreaction in presence of the event horizon causes acceleration to slow down in the subsequent evolution. Transition to deceleration occurs eventually, ensuring avoidance of a big rip.Comment: Latex, 5 pages, 2 figures. This version has small changes to match with the version published in MNRAS: Letter

    Construction of the B88 exchange-energy functional in two dimensions

    Get PDF
    We construct a generalized-gradient approximation for the exchange-energy density of finite two-dimensional systems. Guided by non-empirical principles, we include the proper small-gradient limit and the proper tail for the exchange-hole potential. The observed performance is superior to that of the two-dimensional local-density approximation, which underlines the usefulness of the approach in practical applications

    Observational Constraints on the Averaged Universe

    Full text link
    Averaging in general relativity is a complicated operation, due to the general covariance of the theory and the non-linearity of Einstein's equations. The latter of these ensures that smoothing spacetime over cosmological scales does not yield the same result as solving Einstein's equations with a smooth matter distribution, and that the smooth models we fit to observations need not be simply related to the actual geometry of spacetime. One specific consequence of this is a decoupling of the geometrical spatial curvature term in the metric from the dynamical spatial curvature in the Friedmann equation. Here we investigate the consequences of this decoupling by fitting to a combination of HST, CMB, SNIa and BAO data sets. We find that only the geometrical spatial curvature is tightly constrained, and that our ability to constrain dark energy dynamics will be severely impaired until we gain a thorough understanding of the averaging problem in cosmology.Comment: 6 pages, 4 figure

    The Hubble rate in averaged cosmology

    Full text link
    The calculation of the averaged Hubble expansion rate in an averaged perturbed Friedmann-Lemaitre-Robertson-Walker cosmology leads to small corrections to the background value of the expansion rate, which could be important for measuring the Hubble constant from local observations. It also predicts an intrinsic variance associated with the finite scale of any measurement of H_0, the Hubble rate today. Both the mean Hubble rate and its variance depend on both the definition of the Hubble rate and the spatial surface on which the average is performed. We quantitatively study different definitions of the averaged Hubble rate encountered in the literature by consistently calculating the backreaction effect at second order in perturbation theory, and compare the results. We employ for the first time a recently developed gauge-invariant definition of an averaged scalar. We also discuss the variance of the Hubble rate for the different definitions.Comment: 12 pages, 25 figures, references added, clarity improved, frame switching subtlety fixed, results unchanged, v3 minor typos fixe
    • …
    corecore