4,659 research outputs found

    Self-consistent parametrization of the two-flavor isotropic color-superconducting ground state

    Get PDF
    Lack of Lorentz invariance of QCD at finite quark chemical potential in general implies the need of Lorentz non-invariant condensates for the self-consistent description of the color-superconducting ground state. Moreover, the spontaneous breakdown of color SU(3) in this state naturally leads to the existence of SU(3) non-invariant non-superconducting expectation values. We illustrate these observations by analyzing the properties of an effective 2-flavor Nambu-Jona-Lasinio type Lagrangian and discuss the possibility of color-superconducting states with effectively gapless fermionic excitations. It turns out that the effect of condensates so far neglected can yield new interesting phenomena.Comment: 16 pages, 3 figure

    Dead Time Compensation for High-Flux Ranging

    Full text link
    Dead time effects have been considered a major limitation for fast data acquisition in various time-correlated single photon counting applications, since a commonly adopted approach for dead time mitigation is to operate in the low-flux regime where dead time effects can be ignored. Through the application of lidar ranging, this work explores the empirical distribution of detection times in the presence of dead time and demonstrates that an accurate statistical model can result in reduced ranging error with shorter data acquisition time when operating in the high-flux regime. Specifically, we show that the empirical distribution of detection times converges to the stationary distribution of a Markov chain. Depth estimation can then be performed by passing the empirical distribution through a filter matched to the stationary distribution. Moreover, based on the Markov chain model, we formulate the recovery of arrival distribution from detection distribution as a nonlinear inverse problem and solve it via provably convergent mathematical optimization. By comparing per-detection Fisher information for depth estimation from high- and low-flux detection time distributions, we provide an analytical basis for possible improvement of ranging performance resulting from the presence of dead time. Finally, we demonstrate the effectiveness of our formulation and algorithm via simulations of lidar ranging.Comment: Revision with added estimation results, references, and figures, and modified appendice

    Dileptons in High-Energy Heavy-Ion Collisions

    Get PDF
    The current status of our understanding of dilepton production in ultrarelativistic heavy-ion collisions is discussed with special emphasis on signals from the (approach towards) chirally restored and deconfined phases. In particular, recent results of the CERN-SPS low-energy runs are compared to model predictions and interpreted. Prospects for RHIC experiments are given.Comment: Invited talk at ICPAQGP, Jaipur, India, Nov. 26-30, 2001; 1 Latex and 9 eps-/ps-files Reoprt No.: SUNY-NTG-02-0

    pp-Process simulations with a modified reaction library

    Get PDF
    We have performed pp-process simulations with the most recent stellar (n,Îł)(n,\gamma) cross sections from the "Karlsruhe Astrophysical Database of Nucleosynthesis in Stars" project (version v0.2, http://nuclear-astrophysics.fzk.de/kadonis). The simulations were carried out with a parametrized supernova type II shock front model (``Îł\gamma process'') of a 25 solar mass star and compared to recently published results. A decrease in the normalized overproduction factor could be attributed to lower cross sections of a significant fraction of seed nuclei located in the Bi and Pb region around the NN=126 shell closure.Comment: 5 pages, 1 figure Proceedings "Nuclear Physics in Astrophysics NPA-III", Dresden/Germany (2007

    Photon and dilepton emission rates from high density quark matter

    Full text link
    We compute the rates of real and virtual photon (dilepton) emission from dense QCD matter in the color-flavor locked (CFL) phase, focusing on results at moderate densities (3-5 times the nuclear saturation density) and temperatures T≃80T\simeq80 MeV. We pursue two approaches to evaluate the electromagnetic (e.m.) response of the CFL ground state: (i) a direct evaluation of the photon self energy using quark particle/-hole degrees of freedom, and (ii) a Hidden Local Symmetry (HLS) framework based on generalized mesonic excitations where the ρ\rho meson is introduced as a gauge boson of a local SU(3) color-flavor group. The ρ\rho coupling to generalized two-pion states induces a finite width and allows to address the issue of vector meson dominance (VMD) in the CFL phase. We compare the calculated emissivities (dilepton rates) to those arising from standard hadronic approaches including in-medium effects. For rather large superconducting gaps (several tens of MeV at moderate densities), as suggested by both perturbative and nonperturbative estimates, the dilepton rates from CFL quark matter turn out to be very similar to those obtained in hadronic many-body calculations, especially for invariant masses above M≃0.3M\simeq0.3 GeV. A similar observation holds for (real) photon production.Comment: 18 pages, 12 figure

    Statistical Complexity and Nontrivial Collective Behavior in Electroencephalografic Signals

    Full text link
    We calculate a measure of statistical complexity from the global dynamics of electroencephalographic (EEG) signals from healthy subjects and epileptic patients, and are able to stablish a criterion to characterize the collective behavior in both groups of individuals. It is found that the collective dynamics of EEG signals possess relative higher values of complexity for healthy subjects in comparison to that for epileptic patients. To interpret these results, we propose a model of a network of coupled chaotic maps where we calculate the complexity as a function of a parameter and relate this measure with the emergence of nontrivial collective behavior in the system. Our results show that the presence of nontrivial collective behavior is associated to high values of complexity; thus suggesting that similar dynamical collective process may take place in the human brain. Our findings also suggest that epilepsy is a degenerative illness related to the loss of complexity in the brain.Comment: 13 pages, 3 figure

    Interferometry of direct photons in Pb+Pb collisions at 158 AGeV

    Full text link
    We present final results from the WA98 experiment which provide first measurements of Bose-Einstein correlations of direct photons in ultrarelativistic heavy ion collisions. Invariant interferometric radii were extracted in the range 100<KT<300100<K_T<300 MeV/c and compared to interferometric radii of charged pions. The yield of direct photons for 100<pT<300100<p_T<300 MeV/c was extracted from the correlation strength parameter and compared to the yield of direct photons measured in WA98 at higher pTp_T with the statistical subtraction method, and to predictions of a fireball model.Comment: 4 pages, 3 figures, proceedings for Quark Matter 200

    Hadro-Chemistry and Evolution of (Anti-) Baryon Densities at RHIC

    Get PDF
    The consequences of hadro-chemical freezeout for the subsequent hadron gas evolution in central heavy-ion collisions at RHIC and LHC energies are discussed with special emphasis on effects due to antibaryons. Contrary to naive expectations, their individual conservation, as implied by experimental data, has significant impact on the chemical off-equilibrium composition of hadronic matter at collider energies. This may reflect on a variety of observables including source sizes and dilepton spectra.Comment: 4 pages ReVTeX incl. 3 ps-figs, submitted to PR

    Consideration of permanent tidal deformation in the orbit determination and data analysis for the Topex/Poseidon mission

    Get PDF
    The effects of the permanent tidal effects of the Sun and Moon with specific applications to satellite altimeter data reduction are reviewed in the context of a consistent definition of geoid undulations. Three situations are applicable not only for altimeter reduction and geoid definition, but also for the second degree zonal harmonic of the geopotential and the equatorial radius. A recommendation is made that sea surface heights and geoid undulations placed on the Topex/Poseidon geophysical data record should be referred to the mean Earth case (i.e., with the permanent effects of the Sun and Moon included). Numerical constants for a number of parameters, including a flattening and geoid geopotential, are included

    Signatures of Thermal Dilepton Radiation at RHIC

    Get PDF
    The properties of thermal dilepton production from heavy-ion collisions in the RHIC energy regime are evaluated for invariant masses ranging from 0.5 to 3 GeV. Using an expanding thermal fireball to model the evolution through both quark-gluon and hadronic phases various features of the spectra are addressed. In the low-mass region, due to an expected large background, the focus is on possible medium modifications of the narrow resonance structures from ω\omega and ϕ\phi mesons, whereas in the intermediate-mass region the old idea of identifying QGP radiation is reiterated including effects of chemical under-saturation in the early stages of central Au+Au collisions.Comment: 17 pages ReVTeX including 16 figure
    • 

    corecore