44 research outputs found

    Low amounts of PEG-lipid induce cubic phase in phosphatidylethanolamine dispersions

    Get PDF
    AbstractBy using time-resolved X-ray diffraction we demonstrate that low amounts (5–10 mol%) of a phospholipid with two saturated hydrocarbon acyl chains 14 carbon atoms long and PEG550 chain covalently attached to its phosphoethanolamine polar head group, DMPE(PEG550), induce spontaneous formation of a cubic phase with lattice constant 20.5 nm (cubic aspect #8, space group Im3m) in aqueous dispersions of dielaidoylphosphatidylethanolamine (DEPE). This phase displays a highly resolved X-ray diffraction pattern with 17 low-angle reflections. The cubic phase was found to intrude in the temperature range between the lamellar liquid crystalline (Lα) phase and the inverted hexagonal phase (HII) known to form in pure DEPE/water dispersions. A higher DMPE(PEG550) amount of 20 mol% was found to eliminate the non-lamellar phases in the temperature scale up to 100°C. DMPE grafted with PEG5000 only shifts the Lα-HII transition of DEPE to higher temperatures but does not promote formation of cubic phase. These findings indicate that, consistent with their bulky head groups, the PEG-lipids decrease the tendency for negative interfacial mean curvature of the DEPE bilayers

    New phases induced by sucrose in saturated phosphatidylethanolamines: an expanded lamellar gel phase and a cubic phase

    Get PDF
    AbstractA new lamellar gel phase (Lβ) with expanded lamellar period was found at low temperatures in dihexadecylphosphatidylethanolamine (DHPE) and dipalmitoylphosphatidylethanolamine (DPPE) dispersions in concentrated sucrose solutions (1–2.4 M). It forms via a cooperative, relatively broad transition upon cooling of the Lβ gel phase of these lipids. According to the X-ray data, the transformation between Lβ and Lβ is reversible, with a temperature hysteresis of 6–10°C and a transition width of about 10°C. No specific volume changes and a very small heat absorption of about 0.05 kcal/mol accompany this transition. The Lβ−Lβ transition temperature strongly depends on the disaccharide concentration. From a value of about 10°C below the melting transition of DHPE, it drops by 25°C with decrease of sucrose concentration from 2.4 M to 1 M. The low-temperature gel phase Lβ has a repeat spacing by 8–10 Å larger than that of the Lβ gel phase and a single symmetric 4.2 Å wide-angle peak. It has been observed in 1. 1.25, 1.5 and 2.4 M solutions of sucrose, but not in 0.5 M of sucrose. The data clearly indicate that the expanded lamellar period of the Lβ phase results from a cooperative, reversible with the temperature, increase of the interlamellar space of the Lβ gel phase. Other sugars (trehalose, maltose, fructose, glucose) induce similar expanded low-temperature gel phases in DHPE and DPPE. The Lβ phase is osmotically insensitive. Its lamellar period does not depend on the sucrose concentration, while the lattice spacings of the Lα, Lβ and HH phases decrease linearly with increase of sucrose concentration. Another notable sugar effect is the induction of a cubic phase in these lipids. It forms during the reverse HH−Lα phase transition and coexists with the Lα phase in the whole temperature range between the HH and Lβ phases. The cubic phase has only been observed at sucrose concentrations of 1 M and above. In accordance with previous data, sucrose suppresses the Lα phase in both lipids and brings about a direct Lβ−HH phase transition in DHPE. A rapid, reversible gel-subgel transformation takes place at about 17°C in both DPPE and DHPE. Its properties do not depend on the sucrose concentration. The observed new effects of disaccharides on the properties of lipid dispersions might be relevant to their action as natural protectants

    Sterols sense swelling in lipid bilayers

    Full text link
    In the mimetic membrane system of phosphatidylcholine bilayers, thickening (pre-critical behavior, anomalous swelling) of the bilayers is observed, in the vicinity of the main transition, which is non-linear with temperature. The sterols cholesterol and androsten are used as sensors in a time-resolved simultaneous small- and wide angle x-ray diffraction study to investigate the cause of the thickening. We observe precritical behavior in the pure lipid system, as well as with sterol concentrations less than 15%. To describe the precritical behavior we introduce a theory of precritical phenomena.The good temperature resolution of the data shows that a theory of the influence of fluctuations needs modification. The main cause of the critical behavior appears to be a changing hydration of the bilayer.Comment: 11 pages, 7 ps figures included, to appear in Phys.Rev.

    The important role of sponges in carbon and nitrogen cycling in a deep-sea biological hotspot

    Get PDF
    Deep-sea sponge grounds are hotspots of biodiversity, harbouring thriving ecosystems in the otherwise barren deep sea. It remains unknown how these sponge grounds survive in this food-limited environment. Here, we unravel how sponges and their associated fauna sustain themselves by identifying their food sources and food-web interactions using bulk and compound-specific stable isotope analysis of amino and fatty acids. We found that sponges with a high microbial abundance had an isotopic composition resembling organisms at the base of the food web, suggesting that they are able to use dissolved resources that are generally inaccessible to animals. In contrast, low microbial abundance sponges had a bulk isotopic composition that resembles a predator at the top of a food web, which appears to be the result of very efficient recycling pathways that are so far unknown. The compound-specific-isotope analysis, however, positioned low-microbial abundance sponges with other filter-feeding fauna. Furthermore, fatty-acid analysis confirmed transfer of sponge-derived organic material to the otherwise food-limited associated fauna. Through this subsidy, sponges are key to the sustenance of thriving deep-sea ecosystems and might have, due to their ubiquitous abundance, a global impact on biogeochemical cycles.publishedVersio

    Parity doubling of nucléons, Delta and Omega baryons across the deconfinement phase transition

    Get PDF
    In this work we analyse positive- and negative-parity channels for the nucleon (spin 1/2 octet), Δ and Ω baryons (spin 3/2 decuplet) using lattice QCD. In Nature, at zero temperature, chiral symmetry is spontaneously broken, causing positive- and negative-parity ground states to have different masses. However, chiral symmetry is expected to be restored (for massless quarks) around the crossover temperature, implying that the two opposite parity channels should become degenerate. Here we study what happens in a temperature range which includes both the hadronic and the quark gluon plasma (QGP) phase. By analysing the correlation and spectral functions via exponential fits and the Maximum Entropy Method respectively, we have found parity doubling for the nucleon and Δ baryon channels in the QGP phase. For the Ω baryon we see a clear signal of parity doubling at the crossover temperature, which is however not complete, due to the nonzero strange quark mass. Moreover, in-medium effects in the hadronic phase are evident for all three baryons, in particular for the negative-parity ground states. This might have implications for the hadron resonance gas model. In this work we used the FASTSUM anisotropic Nf=2+1 ensembles

    Molecular Phylogenetic Evaluation of Classification and Scenarios of Character Evolution in Calcareous Sponges (Porifera, Class Calcarea)

    Get PDF
    Calcareous sponges (Phylum Porifera, Class Calcarea) are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU) rDNA and the almost complete large subunit (LSU) rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute. Our phylogeny also provided support for the vaguely suspected close relationship of several members of Grantiidae with giantortical diactines to members of Heteropiidae. Similarly, our analyses revealed several unexpected affinities, such as a sister group relationship between Leucettusa (Leucaltidae) and Leucettidae and between Leucascandra (Jenkinidae) and Sycon carteri (Sycettidae). According to our results, the taxonomy of Calcarea is in desperate need of a thorough revision, which cannot be achieved by considering morphology alone or relying on a taxon sampling based on the current classification below the subclass level

    Structure of the stable and metastable ripple phase of dipalmitoylphosphatidylcholine

    No full text
    Dipalmitoylphosphatidylcholine (DPPC) dispersed in excess water forms a stable ripple phase upon heating from the gel phase and a metastable ripple phase Pβ′ (mst) upon cooling from the liquid crystalline phase. The X-ray diffraction pattern of Pβ′ (mst) displays several reflections in the range from 1/25 to 1/2.8 nm−1, which can all be indexed on a two-dimensional monoclinic lattice (space group p2) with a=26.2, b=8.63 nm and γ=107°. In contrast to the stable ripple phase, which shows a sawtooth like surface profile and an almost constant bilayer thickness, the electron density map of the metastable ripple phase shows an almost symmetric surface profile with a modulation length of 26.2 nm. The lipid bilayer thickness varies from 3.9 to 4.4 nm, which most likely arises from a continuous periodic change of the tilt of the chains to the surface normal of between 30 and 40 degrees. A further important feature of the structure is the staggered stacking of the bilayers with water pockets enclosed

    Simultaneous small- and wide-angle X-ray diffraction during the main transition of dimyristoylphosphatidylethanolamine

    No full text
    The main transition of dimyristoylphosphatidylethanolamine (DMPE) dispersed in excess water has been investigated by simultaneous small- and wide-angle X-ray diffraction during heating and cooling scans. At scan-rates of 0.6°C/min and 0.1°C/min the transition has at least three components during heating, and four components during cooling. Amplitude and thermal width of these components are similar to those found in calorimetric experiments (B.Z. Chowdhry, G. Lipka, A. W. Dalziel, and J. M. Sturtevant, Biophys. J. 45, 901-904 (1984); H. Yao, I. Hatta, R. Koynova, and B. Tenchov, Biophys. J. 61, 683-693 (1992)). It is suggested that the different components of the transition from the gel to the liquid crystalline phase and vice versa are attributed to different steps of a cluster growth mechanism in liposomes. Initially the growth proceeds primarily radially, most likely along defects, and not shell by shell. A model is presented to explain (1) the sequence of steps, (2) their relative width and cooperativity and (3) the hysteresis of the transition
    corecore