4,576 research outputs found

    New players in the preventive treatment of migraine.

    Get PDF
    Migraine is a common, chronic disorder of the brain causing much disability, as well as personal, familial and societal impact. Several oral preventive agents are available in different countries for the prevention of migraine, but none have performed better than 50% improvement in 50% of patients in a clinical trial. Additionally, each has various possible adverse events making their tolerability less than optimal. Recently, three monoclonal antibodies targeting the calcitonin gene-related peptide (CGRP) ligand (LY2951742, ALD403 and TEV-48125) and one targeting the CGRP receptor (AMG 334) have completed phase 2 trials, and the results have been reported. These early results show them all to be somewhat more effective than placebo, with no serious adverse events. Three have been studied for episodic migraine, and only TEV-48125 has been studied for both high frequency episodic and chronic migraine. Moreover, preliminary data suggests that neurostimulation is effective in migraine treatment, including stimulation of the sphenopalatine ganglion, transcutaneous supraorbital and supratrochlear nerve, and transcutaneous vagus nerve. In this article, these innovative therapies will be reviewed

    Networking Effects on Cooperation in Evolutionary Snowdrift Game

    Full text link
    The effects of networking on the extent of cooperation emerging in a competitive setting are studied. The evolutionary snowdrift game, which represents a realistic alternative to the well-known Prisoner's Dilemma, is studied in the Watts-Strogatz network that spans the regular, small-world, and random networks through random re-wiring. Over a wide range of payoffs, a re-wired network is found to suppress cooperation when compared with a well-mixed or fully connected system. Two extinction payoffs, that characterize the emergence of a homogeneous steady state, are identified. It is found that, unlike in the Prisoner's Dilemma, the standard deviation of the degree distribution is the dominant network property that governs the extinction payoffs.Comment: Changed conten

    Controlling cluster synchronization by adapting the topology

    Get PDF
    We suggest an adaptive control scheme for the control of zero-lag and cluster synchronization in delay-coupled networks. Based on the speed-gradient method, our scheme adapts the topology of a network such that the target state is realized. It is robust towards different initial condition as well as changes in the coupling parameters. The emerging topology is characterized by a delicate interplay of excitatory and inhibitory links leading to the stabilization of the desired cluster state. As a crucial parameter determining this interplay we identify the delay time. Furthermore, we show how to construct networks such that they exhibit not only a given cluster state but also with a given oscillation frequency. We apply our method to coupled Stuart-Landau oscillators, a paradigmatic normal form that naturally arises in an expansion of systems close to a Hopf bifurcation. The successful and robust control of this generic model opens up possible applications in a wide range of systems in physics, chemistry, technology, and life science

    Growing Scale-Free Networks with Tunable Clustering

    Full text link
    We extend the standard scale-free network model to include a ``triad formation step''. We analyze the geometric properties of networks generated by this algorithm both analytically and by numerical calculations, and find that our model possesses the same characteristics as the standard scale-free networks like the power-law degree distribution and the small average geodesic length, but with the high-clustering at the same time. In our model, the clustering coefficient is also shown to be tunable simply by changing a control parameter - the average number of triad formation trials per time step.Comment: Accepted for publication in Phys. Rev.

    Asymmetry of the natural line profile for the hydrogen atom

    Get PDF
    The asymmetry of the natural line profile for transitions in hydrogen-like atoms is evaluated within a QED framework. For the Lyman-alpha 1s2p1s-2p absorption transition in neutral hydrogen this asymmetry results in an additional energy shift of 2.929856 Hz. For the 2s1/22p3/22s_{1/2}-2p_{3/2} transition it amounts to -1.512674 Hz. As a new feature this correction turns out to be process dependent. The quoted numbers refer to the Compton-scattering process.Comment: RevTex, 7 Latex pages, 1 figur

    Network dynamics of ongoing social relationships

    Full text link
    Many recent large-scale studies of interaction networks have focused on networks of accumulated contacts. In this paper we explore social networks of ongoing relationships with an emphasis on dynamical aspects. We find a distribution of response times (times between consecutive contacts of different direction between two actors) that has a power-law shape over a large range. We also argue that the distribution of relationship duration (the time between the first and last contacts between actors) is exponentially decaying. Methods to reanalyze the data to compensate for the finite sampling time are proposed. We find that the degree distribution for networks of ongoing contacts fits better to a power-law than the degree distribution of the network of accumulated contacts do. We see that the clustering and assortative mixing coefficients are of the same order for networks of ongoing and accumulated contacts, and that the structural fluctuations of the former are rather large.Comment: to appear in Europhys. Let

    Interlayer Registry Determines the Sliding Potential of Layered Metal Dichalcogenides: The case of 2H-MoS2

    Full text link
    We provide a simple and intuitive explanation for the interlayer sliding energy landscape of metal dichalcogenides. Based on the recently introduced registry index (RI) concept, we define a purely geometrical parameter which quantifies the degree of interlayer commensurability in the layered phase of molybdenum disulphide (2HMoS2). A direct relation between the sliding energy landscape and the corresponding interlayer registry surface of 2H-MoS2 is discovered thus marking the registry index as a computationally efficient means for studying the tribology of complex nanoscale material interfaces in the wearless friction regime.Comment: 13 pages, 7 figure

    Approximating multi-dimensional Hamiltonian flows by billiards

    Full text link
    Consider a family of smooth potentials VϵV_{\epsilon}, which, in the limit ϵ0\epsilon\to0, become a singular hard-wall potential of a multi-dimensional billiard. We define auxiliary billiard domains that asymptote, as ϵ0\epsilon\to0 to the original billiard, and provide asymptotic expansion of the smooth Hamiltonian solution in terms of these billiard approximations. The asymptotic expansion includes error estimates in the CrC^{r} norm and an iteration scheme for improving this approximation. Applying this theory to smooth potentials which limit to the multi-dimensional close to ellipsoidal billiards, we predict when the separatrix splitting persists for various types of potentials

    Complete intersections: Moduli, Torelli, and good reduction

    Get PDF
    We study the arithmetic of complete intersections in projective space over number fields. Our main results include arithmetic Torelli theorems and versions of the Shafarevich conjecture, as proved for curves and abelian varieties by Faltings. For example, we prove an analogue of the Shafarevich conjecture for cubic and quartic threefolds and intersections of two quadrics.Comment: 37 pages. Typo's fixed. Expanded Section 2.
    corecore