55 research outputs found

    Recent Assembly of an Imprinted Domain from Non-Imprinted Components

    Get PDF
    Genomic imprinting, representing parent-specific expression of alleles at a locus, raises many questions about how—and especially why—epigenetic silencing of mammalian genes evolved. We present the first in-depth study of how a human imprinted domain evolved, analyzing a domain containing several imprinted genes that are involved in human disease. Using comparisons of orthologous genes in humans, marsupials, and the platypus, we discovered that the Prader-Willi/Angelman syndrome region on human Chromosome 15q was assembled only recently (105–180 million years ago). This imprinted domain arose after a region bearing UBE3A (Angelman syndrome) fused with an unlinked region bearing SNRPN (Prader-Willi syndrome), which had duplicated from the non-imprinted SNRPB/B′. This region independently acquired several retroposed gene copies and arrays of small nucleolar RNAs from different parts of the genome. In their original configurations, SNRPN and UBE3A are expressed from both alleles, implying that acquisition of imprinting occurred after their rearrangement and required the evolution of a control locus. Thus, the evolution of imprinting in viviparous mammals is ongoing

    The Evolution of Mammalian Genomic Imprinting Was Accompanied by the Acquisition of Novel CpG Islands

    Get PDF
    Parent-of-origin–dependent expression of imprinted genes is mostly associated with allele-specific DNA methylation of the CpG islands (CGIs) called germ line differentially methylated regions (gDMRs). Although the essential role of gDMRs for genomic imprinting has been well established, little is known about how they evolved. In several imprinted loci, the CGIs forming gDMRs may have emerged with the insertion of a retrotransposon or retrogene. To examine the generality of the hypothesis that the CGIs forming gDMRs were novel CGIs recently acquired during mammalian evolution, we reviewed the time of novel CGI emergence for all the maternal gDMR loci using the novel data analyzed in this study combined with the data from previous reports. The comparative sequence analyses using mouse, human, dog, cow, elephant, tammar, opossum, platypus, and chicken genomic sequences were carried out for Peg13, Meg1/Grb10, Plagl1/Zac1, Gnas, and Slc38a4 imprinted loci to obtain comprehensive results. The combined data showed that emergence of novel CGIs occurred universally in the maternal gDMR loci at various time points during mammalian evolution. Furthermore, the analysis of Meg1/Grb10 locus provided evidence that gradual base pair–wise sequence change was involved in the accumulation of CpG sequence, suggesting the mechanism of novel CGI emergence is more complex than the suggestion that CpG sequences originated solely by insertion of CpG-rich transposable elements. We propose that acquisition of novel CGIs was a key genomic change for the evolution of imprinting and that it usually occurred in the maternal gDMR loci

    Veliparib in combination with radiotherapy for the treatment of MGMT unmethylated glioblastoma

    Get PDF
    BackgroundThe O 6 -methylguanine methyltransferase (MGMT) gene is frequently unmethylated in patients with glioblastoma (GBM), rendering them non-responsive to the standard treatment regime of surgery followed by concurrent radiotherapy (RT) and temozolomide. Here, we investigate the efficacy of adding a PARP inhibitor, veliparib, to radiotherapy to treat MGMT unmethylated GBM.MethodsThe inhibition of PARP with veliparib (ABT-888), a potent and orally bioavailable inhibitor in combination with RT was tested on a panel of patient derived cell lines (PDCLs) and patient-derived xenografts (PDX) models generated from GBM patients with MGMT unmethylated tumors.ResultsThe combination of veliparib and RT inhibited colony formation in the majority of PDCLs tested. The PDCL, RN1 showed significantly reduced levels of the homologous repair protein, Mre11 and a heightened response to PARP inhibition measured by increased apoptosis and decreased colony formation. The oral administration of veliparib (12.5 mg/kg, twice daily for 5 days in a 28-day treatment cycle) in combination with whole brain RT (4 Gy) induced apoptosis (Tunel staining) and decreased cell proliferation (Ki67 staining) in a PDX of MGMT unmethylated GBM. Significantly longer survival times of the PDX treated with the combination treatment were recorded compared to RT only or veliparib only.ConclusionsOur results demonstrate preclinical efficacy of targeting PARP at multiple levels and provide a new approach for the treatment of MGMT unmethylated GBM.<br /

    The Evolution of the DLK1-DIO3 Imprinted Domain in Mammals

    Get PDF
    A comprehensive, domain-wide comparative analysis of genomic imprinting between mammals that imprint and those that do not can provide valuable information about how and why imprinting evolved. The imprinting status, DNA methylation, and genomic landscape of the Dlk1-Dio3 cluster were determined in eutherian, metatherian, and prototherian mammals including tammar wallaby and platypus. Imprinting across the whole domain evolved after the divergence of eutherian from marsupial mammals and in eutherians is under strong purifying selection. The marsupial locus at 1.6 megabases, is double that of eutherians due to the accumulation of LINE repeats. Comparative sequence analysis of the domain in seven vertebrates determined evolutionary conserved regions common to particular sub-groups and to all vertebrates. The emergence of Dlk1-Dio3 imprinting in eutherians has occurred on the maternally inherited chromosome and is associated with region-specific resistance to expansion by repetitive elements and the local introduction of noncoding transcripts including microRNAs and C/D small nucleolar RNAs. A recent mammal-specific retrotransposition event led to the formation of a completely new gene only in the eutherian domain, which may have driven imprinting at the cluster

    Construction and evolution of imprinted loci in mammals

    No full text
    Genomic imprinting first evolved in mammals around the time that humans last shared a common ancestor with marsupials and monotremes (180-210 million years ago). Recent comparisons of large imprinted domains in these divergent mammalian groups have show

    Identification of constitutional MLH1 epimutations and promoter variants in colorectal cancer patients from the colon cancer family registry

    No full text
    Purpose:Constitutional MLH1 epimutations manifest as promoter methylation and silencing of the affected allele in normal tissues, predisposing to Lynch syndrome-Associated cancers. This study investigated their frequency and inheritance.Methods:A total of 416 individuals with a colorectal cancer showing loss of MLH1 expression and without deleterious germline mutations in MLH1 were ascertained from the Colon Cancer Family Registry (C-CFR). Constitutive DNA samples were screened for MLH1 methylation in all 416 subjects and for promoter sequence changes in 357 individuals.Results:Constitutional MLH1 epimutations were identified in 16 subjects. Of these, seven (1.7%) had mono-or hemi-Allelic methylation and eight had low-level methylation (2%). In one subject the epimutation was linked to the c.-27C>A promoter variant. Testing of 37 relatives from nine probands revealed paternal transmission of low-level methylation segregating with a c.+27G>A variant in one case. Five additional probands had a promoter variant without an MLH1 epimutation, with three showing diminished promoter activity in functional assays.Conclusion:Although rare, sequence changes in the regulatory region of MLH1 and aberrant methylation may alone or together predispose to the development of cancer. Screening for these changes is warranted in individuals who have a negative germline sequence screen of MLH1 and loss of MLH1 expression in their tumor.Genet Med 2013:15(1):25-35
    corecore