810 research outputs found

    Widening use of dexamethasone implant for the treatment of macular edema

    Get PDF
    Sustained-release intravitreal 0.7 mg dexamethasone (DEX) implant is approved in Europe for the treatment of macular edema related to diabetic retinopathy, branch retinal vein occlusion, central retinal vein occlusion, and non-infectious uveitis. The implant is formulated in a biodegradable copolymer to release the active ingredient within the vitreous chamber for up to 6 months after an intravitreal injection, allowing a prolonged interval of efficacy between injections with a good safety profile. Various other ocular pathologies with inflammatory etio­pathogeneses associated with macular edema have been treated by DEX implant, including neovascular age-related macular degeneration, Irvine–Gass syndrome, vasoproliferative retinal tumors, retinal telangiectasia, Coats’ disease, radiation maculopathy, retinitis pigmentosa, and macular edema secondary to scleral buckling and pars plana vitrectomy. We undertook a review to provide a comprehensive collection of all of the diseases that benefit from the use of the sustained-release DEX implant, alone or in combination with concomitant therapies. A MEDLINE search revealed lack of randomized controlled trials related to these indications. Therefore we included and analyzed all available studies (retrospective and prospective, com­parative and non-comparative, randomized and nonrandomized, single center and multicenter, and case report). There are reports in the literature of the use of DEX implant across a range of macular edema-related pathologies, with their clinical experience supporting the use of DEX implant on a case-by-case basis with the aim of improving patient outcomes in many macular pathologies. As many of the reported macular pathologies are difficult to treat, a new treat­ment option that has a beneficial influence on the clinical course of the disease may be useful in clinical practice

    Exploring the thermodynamic limit of Hamiltonian models: convergence to the Vlasov equation

    Full text link
    We here discuss the emergence of Quasi Stationary States (QSS), a universal feature of systems with long-range interactions. With reference to the Hamiltonian Mean Field (HMF) model, numerical simulations are performed based on both the original NN-body setting and the continuum Vlasov model which is supposed to hold in the thermodynamic limit. A detailed comparison unambiguously demonstrates that the Vlasov-wave system provides the correct framework to address the study of QSS. Further, analytical calculations based on Lynden-Bell's theory of violent relaxation are shown to result in accurate predictions. Finally, in specific regions of parameters space, Vlasov numerical solutions are shown to be affected by small scale fluctuations, a finding that points to the need for novel schemes able to account for particles correlations.Comment: 5 pages, 3 figure

    Exchange Frequencies in the 2d Wigner crystal

    Full text link
    Using Path Integral Monte Carlo we have calculated exchange frequencies as electrons undergo ring exchanges in a ``clean'' 2d Wigner crystal as a function of density. The results show agreement with WKB calculations at very low density, but show a more rapid increase with density near melting. Remarkably, the exchange Hamiltonian closely resembles the measured exchanges in 2d He. Using the resulting multi-spin exchange model we find the spin Hamiltonian for r_s \leq 175 \pm 10 is a frustrated antiferromagnetic; its likely ground state is a spin liquid. For lower density the ground state will be ferromagnetic

    Mindfulness as a protective factor for dissatisfaction in HCWS: The moderating role of mindful attention between climate stress and job satisfaction

    Get PDF
    With the aim of investigating the possible moderating effect of job control and dispositional mindfulness between different sources of organizational stress and job satisfaction, a correlational study was designed involving health care workers (HCWs). The following questionnaires were administered and completed by 237 HCWs: (1) Occupational Stress Indicator (OSI), to measure the sources of stress at work (managerial role, climate power, climate structure, internal relationships), and job satisfaction; (2) Mindfulness Attention Awareness Scale (MAAS) to assess the individual's level of attention to what is taking place in the present; (3) Job Control Scale (JCS) to assess the perceived control at work. Hierarchical regression analyses were used to test the hypothesized relationships between variables; the results showed that, between the different sources of stress, the organizational climate dimension was negatively associated with job satisfaction; moreover, mindfulness attention moderated the relationship between climate stress and job satisfaction; unexpectedly, the interaction between job control and the organizational climate dimension was not significant in affecting job satisfaction. This study can provide useful information for Human Resources Management (HRM) practices regarding job and mental control interventions and empowerment, and possibly offer a new interpretation of the role of attention to what is happening in the present moment and autonomy between climate stressors and occupational satisfaction

    Ground state and optical conductivity of interacting polarons in a quantum dot

    Full text link
    The ground-state energy, the addition energies and the optical absorption spectra are derived for interacting polarons in parabolic quantum dots in three and two dimensions. A path integral formalism for identical particles is used in order to take into account the fermion statistics. The approach is applied to both closed-shell and open-shell systems of interacting polarons. Using a generalization of the Jensen-Feynman variational principle, the ground-state energy of a confined N-polaron system is analyzed as a function of N and of the electron-phonon coupling constant. As distinct from the few-electron systems without the electron-phonon interaction, three types of spin polarization are possible for the ground state of the few-polaron systems: (i) a spin-polarized state, (ii) a state where the spin is determined by Hund's rule, (iii) a state with the minimal possible spin. A transition from a state fulfilling Hund's rule, to a spin-polarized state occurs when decreasing the electron density. In the strong-coupling limit, the system of interacting polarons turns into a state with the minimal possible spin. These transitions should be experimentally observable in the optical absorption spectra of quantum dots.Comment: 33 pages, 9 figures, E-mail addresses: [email protected], [email protected], [email protected], [email protected], accepted for Phys. Rev.

    On "Ergodicity and Central Limit Theorem in Systems with Long-Range Interactions" by Figueiredo et al

    Full text link
    In the present paper we refute the criticism advanced in a recent preprint by Figueiredo et al [1] about the possible application of the qq-generalized Central Limit Theorem (CLT) to a paradigmatic long-range-interacting many-body classical Hamiltonian system, the so-called Hamiltonian Mean Field (HMF) model. We exhibit that, contrary to what is claimed by these authors and in accordance with our previous results, qq-Gaussian-like curves are possible and real attractors for a certain class of initial conditions, namely the one which produces nontrivial longstanding quasi-stationary states before the arrival, only for finite size, to the thermal equilibrium.Comment: 2 pages, 2 figures. Short version of the paper, accepted for publication in Europhysics Letters, (2009) in pres

    Application of Gamma Irradiation Treatment on the Physicochemical and Microbiological Quality of an Artisanal Hard Cheese

    Get PDF
    The objective of this study was to evaluate the efficacy of gamma irradiation, applied to different cheese sample sizes (250g and 500 g), against Listeria monocytogenes, Escherichia coli, coliforms and aerobic colony counts. The effects on cheese physicochemical and odour properties and all costs involved for the treatment were quantified. The Cobalt-60 Îł-irradiator was used at a maximum dose of 5.0 kGy. The values for cheese moisture (28.6%), ash (3.78%), pH (5.1), protein (29.6%), fat (30.7%), salt (1.95%) and water activity (0.92%) were within the acceptable ranges for hard cheese after gamma irradiation treatment. The colour (yellowness, redness, chroma and hue angle) and texture (cohesive-ness and springiness) values decreased (p < 0.05) with the treatment. Compounds such as safrole, acetylpyrazine, thiophene, 3,5-octadien-2-one and 1-Octen-3-one were present after the treatment, regardless of sample size. The gamma irradiation treatment resulted in 100%, 87.2%, 85.1% and 77.3% reduction in L. monocytogenes, coliforms, E. coli and aerobic colony counts, respectively. The study highlighted the efficacy of irradiation treatment and its affordability for resource-limited producers

    DONKEY MILK SHELF LIFE: MICROBIOLOGY AND VOLATILE COMPOUNDS

    Get PDF
    Organoleptics properties are important to evaluate the shelf life of food products. Sensory analysis is generally used for this purpose. In this study psychrotrophic, mesophilic bacteria, and pH values were correlated to volatile compounds. The quality of raw donkey milk stored for 3, 7, 10, 14 and 28 days at two different temperatures (3°C and 7°C) was tested. Donkey milk volatiles for the first time in this study were identified. Different volatiles distribution were detected by Smart Nose and GCO during the trials and a correlation with bacteriological and pH data were shown. On the basis of the results the acceptability of 10 days storing at +3°C, and of 3-4 days at +7°C, for milk samples, was pointed out
    • …
    corecore