301 research outputs found

    High-sensitive troponin T measurements: what do we gain and what are the challenges?

    Get PDF
    Cardiac troponin (cTn) I and T are structural proteins unique to the heart. Detection of cTn in peripheral blood indicates cardiomyocyte damage. As acute myocardial infarction (AMI) is the most important cause of cardiomyocyte damage, cTns have become an integral part in the diagnosis of AMI. For this indication, cTns are superior to all other biomarkers and therefore are the preferred marker for the diagnosis of AMI. However, cTn indicates and provides an estimate of cardiomyocyte damage irrespective of its cause. The major limitation of contemporary cTn assays is that they are often not elevated during the initial hours of AMI. Recent advances in assay technology have led to more sensitive and precise cTn assays that will have a profound impact on clinical practice. High-sensitive cTn (hs-cTn) assays have two differentiating features from contemporary cTn assays: (i) detection of cTn in a majority of healthy persons and (ii) precise definition of what is ‘normal' (=the 99th percentile). Recent multicentre studies have shown that hs-cTn assays improve the early diagnosis of patients with suspected AMI, particularly the early rule-out. To achieve best clinical use, cTn has to be interpreted as a quantitative variable. Rising and/or falling levels differentiate acute from chronic cardiomyocyte damage. The terms ‘troponin-positive' and ‘troponin negative' should therefore be avoided. ‘Detectable' levels will become the norm and will have to be differentiated from ‘elevated' levels. The differential diagnosis of a small amount of cardiomyocyte damage and therefore minor elevations of cTn is broad and includes acute and chronic cardiac disorders. The differential diagnosis of larger amount of injury and therefore more substantial elevations of cTn is largely restricted to AMI, myocarditis, and a rare patient with tako-tsubo cardiomyopath

    Update on high-sensitivity cardiac troponin in patients with suspected myocardial infarction

    Get PDF
    High-sensitivity cardiac troponin (hs-cTn) assays have been used clinically in many countries throughout the world for years and complement detailed clinical assessment and the electrocardiogram in the early diagnosis of myocardial infarction (MI). High-sensitivity cardiac troponin assays for the first time allow to precisely quantify cardiomyocyte injury around the 99th percentile and thereby substantially increase the accuracy for MI already for blood draws obtained at presentation to the emergency department (ED). Higher diagnostic accuracy at ED presentation enabled the development and extensive validation of early hs-cTn-based diagnostic algorithms, which substantially reduced the time required for safe rule-out or rule-in of MI

    Comparison of calling pipelines for whole genome sequencing: an empirical study demonstrating the importance of mapping and alignment

    Full text link
    Rapid advances in high-throughput DNA sequencing technologies have enabled the conduct of whole genome sequencing (WGS) studies, and several bioinformatics pipelines have become available. The aim of this study was the comparison of 6 WGS data pre-processing pipelines, involving two mapping and alignment approaches (GATK utilizing BWA-MEM2 2.2.1, and DRAGEN 3.8.4) and three variant calling pipelines (GATK 4.2.4.1, DRAGEN 3.8.4 and DeepVariant 1.1.0). We sequenced one genome in a bottle (GIAB) sample 70 times in different runs, and one GIAB trio in triplicate. The truth set of the GIABs was used for comparison, and performance was assessed by computation time, F1 score, precision, and recall. In the mapping and alignment step, the DRAGEN pipeline was faster than the GATK with BWA-MEM2 pipeline. DRAGEN showed systematically higher F1 score, precision, and recall values than GATK for single nucleotide variations (SNVs) and Indels in simple-to-map, complex-to-map, coding and non-coding regions. In the variant calling step, DRAGEN was fastest. In terms of accuracy, DRAGEN and DeepVariant performed similarly and both superior to GATK, with slight advantages for DRAGEN for Indels and for DeepVariant for SNVs. The DRAGEN pipeline showed the lowest Mendelian inheritance error fraction for the GIAB trios. Mapping and alignment played a key role in variant calling of WGS, with the DRAGEN outperforming GATK

    Coronary and structural heart interventions in Switzerland 2018

    Get PDF
    Since the first coronary angioplasty by Andreas Grüntzig in Zurich in 1977, the number of cardiac interventional procedures has steadily increased. The aim of this report is to summarise the state of catheter-based cardiac interventions in adults in Switzerland in 2018. Since 1987, the Working Group Interventional Cardiology of the Swiss Society of Cardiology has collected annually aggregate data from all facilities with cardiac catheterisation laboratories in the country, currently 36 institutions in 17 cantons of Switzerland. Over past years, the numbers of coronary angiography procedures (CAs) and percutaneous coronary interventions (PCIs) increased steadily reaching 57,309 for CA and 27,318 for PCI in 2018. Among structural heart interventions, a broad spectrum of transcatheter procedures is currently available in Switzerland. Numbers of transcatheter aortic valve implantations similarly increased, with 1781 implantations in 2018

    Impact of soluble fms-like tyrosine kinase-1 and placental growth factor serum levels for risk stratification and early diagnosis in patients with suspected acute myocardial infarction

    Get PDF
    Aims Angiogenic factors play an important role in the development of atherosclerosis and show pronounced changes during acute myocardial infarction (AMI). We analysed the impact of placental growth factor (PlGF) and its endogen opponent, soluble fms-like tyrosine kinase-1 (sFlt-1), on clinical outcome and the early diagnosis of AMI. Methods and results This multicentre study enrolled patients presenting with symptoms suggestive of AMI. The final diagnosis was adjudicated by two independent physicians. Levels of sFlt-1 and PlGF were compared with results of a standard troponin T and a novel high-sensitive troponin (hsTnT) assay. Of the 763 patients enrolled, 132 were diagnosed with AMI. Multivariable Cox regression analysis demonstrated sFlt-1 >84 ng/L [hazard ratios (HR) 2.6, 95% confidence intervals (CI) 1.2-5.4, P=0.01] and PlGF >20 ng/L (HR 3.6, 95% CI 1.3-10.4, P=0.02) as predictors for mortality during 1-year follow-up, independent from information provided by troponin T and N-terminal pro-B-type natriuretic peptide (NT-proBNP). However, only sFlt-1 persisted as independent predictor for mortality when analysed together with hsTnT and NT-proBNP, and after adjusting for significant clinical parameters. For the diagnosis of AMI, the combination of troponin T and sFlt-1 improved the performance of troponin T alone and led to a negative predictive value of 98.3% already at time of presentation. However, sFlt-1 and PlGF added only limited diagnostic information when used together with hsTnT. Conclusion Only sFlt-1 but not PlGF provides overall independent prognostic information in patients presenting with symptoms suggestive of AMI. After the introduction of hsTnT in clinical routine, sFlt-1 and PlGF can only add limited diagnostic information for the detection or exclusion of AMI. Clinical Trial Registration Information: ClinicalTrials.gov, NCT0047058

    Effect of oral beta-blocker on short and long-term mortality in patients with acute respiratory failure: results from the BASEL-II-ICU study

    Get PDF
    Acute respiratory failure (ARF) is responsible for about one-third of intensive care unit (ICU) admissions and is associated with adverse outcomes. Predictors of short- and long-term outcomes in unselected ICU-patients with ARF are ill-defined. The purpose of this analysis was to determine predictors of in-hospital and one-year mortality and assess the effects of oral beta-blockers in unselected ICU patients with ARF included in the BASEL-II-ICU study. The BASEL II-ICU study was a prospective, multicenter, randomized, single-blinded, controlled trial of 314 (mean age 70 (62 to 79) years) ICU patients with ARF evaluating impact of a B-type natriuretic peptide- (BNP) guided management strategy on short-term outcomes. In-hospital mortality was 16% (51 patients) and one-year mortality 41% (128 patients). Multivariate analysis assessed that oral beta-blockers at admission were associated with a lower risk of both in-hospital (HR 0.33 (0.14 to 0.74) P = 0.007) and one-year mortality (HR 0.29 (0.16 to 0.51) P = 0.0003). Kaplan-Meier analysis confirmed the lower mortality in ARF patients when admitted with oral beta-blocker and further shows that the beneficial effect of oral beta-blockers at admission holds true in the two subgroups of patients with ARF related to cardiac or non-cardiac causes. Kaplan-Meier analysis also shows that administration of oral beta-blockers before hospital discharge gives striking additional beneficial effects on one-year mortality. Established beta-blocker therapy appears to be associated with a reduced mortality in ICU patients with acute respiratory failure. Cessation of established therapy appears to be hazardous. Initiation of therapy prior to discharge appears to confer benefit. This finding was seen regardless of the cardiac or non-cardiac etiology of respiratory failure. ClinicalTrials.gov Identifier: NCT00130559

    Effects of SARS-COV-2 infection on outcomes in patients hospitalized for acute cardiac conditions. A prospective, multicenter cohort study (Swiss Cardiovascular SARS-CoV-2 Consortium).

    Get PDF
    BACKGROUND Although the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) causing coronavirus disease 2019 (COVID-19) primarily affects the respiratory system, the disease entity has been associated with cardiovascular complications. This study sought to assess the effect of concomitant SARS-COV-2 infection on clinical outcomes of patients hospitalized primarily for acute cardiac conditions on cardiology wards in Switzerland. METHODS In this prospective, observational study conducted in 5 Swiss cardiology centers during the COVID-19 pandemic, patients hospitalized due to acute cardiac conditions underwent a reverse-transcriptase polymerase chain reaction test at the time of admission and were categorized as SARS-COV-2 positive (cases) or negative (controls). Patients hospitalized on cardiology wards underwent treatment for the principal acute cardiac condition according to local practice. Clinical outcomes were recorded in-hospital, at 30 days, and after 1 year and compared between cases and controls. To adjust for imbalanced baseline characteristics, a subgroup of patients derived by propensity matching was analyzed. RESULTS Between March 2020 and February 2022, 538 patients were enrolled including 122 cases and 416 controls. Mean age was 68.0 ± 14.7 years, and 75% were men. Compared with controls, SARS-COV-2-positive patients more commonly presented with acute heart failure (35% vs. 17%) or major arrhythmia (31% vs. 9%), but less commonly with acute coronary syndrome (26% vs. 53%) or severe aortic stenosis (4% vs. 18%). Mortality was significantly higher in cases vs. controls in-hospital (16% vs. 1%), at 30 days (19.0% vs. 2.2%), and at 1 year (28.7% vs. 7.6%: p < 0.001 for all); this was driven primarily (up to 30 days) and exclusively (at one-year follow-up) by higher non-cardiovascular mortality, and was accompanied by a greater incidence of worsening renal function in cases vs. controls. These findings were maintained in a propensity-matched subgroup of 186 patients (93 cases and 93 controls) with balanced clinical presentation and baseline characteristics. CONCLUSIONS In this observational study of patients hospitalized for acute cardiac conditions, SARS-COV-2 infection at index hospitalization was associated with markedly higher all-cause and non-cardiovascular mortality throughout one-year follow-up. These findings highlight the need for effective, multifaceted management of both cardiac and non-cardiac morbidities and prolonged surveillance in patients with acute cardiac conditions complicated by SARS-COV-2 infection

    Influence of Antihypertensive Treatment on RAAS Peptides in Newly Diagnosed Hypertensive Patients.

    Get PDF
    (1) Background: Recently, influences of antihypertensive treatment on the renin-angiotensin-aldosterone system (RAAS) has gained attention, regarding a possible influence on inflammatory and anti-inflammatory pathways. We aimed to study the effects of newly initiated antihypertensive drugs on angiotensin (Ang) II and Ang (1-7) as representers of two counter-regulatory axes. (2) Methods: In this randomized, open-label trial investigating RAAS peptides after the initiation of perindopril, olmesartan, amlodipine, or hydrochlorothiazide, Ang II and Ang (1-7) equilibrium concentrations were measured at 8 a.m. and 12 a.m. at baseline and after four weeks of treatment. Eighty patients were randomized (1:1:1:1 fashion). (3) Results: Between the four substances, we found significant differences regarding the concentrations of Ang II (p < 0.0005 for 8 a.m., 12 a.m.) and Ang (1-7) (p = 0.019 for 8 a.m., <0.0005 for 12 a.m.) four weeks after treatment start. Ang II was decreased by perindopril (p = 0.002), and increased by olmesartan (p < 0.0005), amlodipine (p = 0.012), and hydrochlorothiazide (p = 0.001). Ang (1-7) was increased by perindopril and olmesartan (p = 0.008/0.002), but not measurably altered by amlodipine and hydrochlorothiazide (p = 0.317/ 0.109). (4) Conclusion: The initiation of all first line antihypertensive treatments causes early and distinct alterations of equilibrium angiotensin levels. Given the additional AT1R blocking action of olmesartan, RAAS peptides shift upon initiation of perindopril and olmesartan appear to work in favor of the anti-inflammatory axis compared to amlodipine and hydrochlorothiazide
    • …
    corecore