20,486 research outputs found

    Tectonic evolution of greenstone-Gneiss association in Dharwar Craton, South India: Problems and perspectives for future research

    Get PDF
    The two fold stratigraphic subdivision of the Archean-Proterozoic greenstone-gneiss association of Dharwar craton into an older Sargur group (older than 2.9 Ga.) and a younger Dharwar Supergroup serves as an a priori stratigraphic model. The concordant greenstone (schist)-gneiss (Peninsular gneiss) relationships, ambiguities in stratigraphic correlations of the schist belts assigned to Sargur group and difficulties in deciphering the older gneiss units can be best appreciated if the Sargur group be regarded as a trimodal association of: (1) ultrabasic-mafic metavolcanics (including komatiites), (2) clastic and nonclastic metasediments and paragneisses and (3) mainly tonalite/trondhemite gneisses and migmatites of diverse ages which could be as old as c. 3.4 ga. or even older. The extensive occurrence of this greenstone-gneiss complex is evident from recent mapping in many areas of central and southern Karnataka State

    Anomalous microwave response of high-temperature superconducting thin-film microstrip resonator in weak dc magnetic fields

    Full text link
    We have studied an anomalous microwave (mw) response of superconducting YBa_{2}Cu_{3}O_{7-delta} (YBCO) microstrip resonators in the presence of a weak dc magnetic field, H_{dc}. The surface resistance (R_{s}) and reactance (X_{s}) show a correlated non-monotonic behaviour as a function of H_{dc}. R_{s} and X_{s} were found to initially decrease with elevated H_{dc} and then increase after H_{dc} reaches a crossover field, H_{c}, which is independent of the amplitude and frequency of the input mw signal within the measurements. The frequency dependence of R_{s} is almost linear at fixed H_{dc} with different magnitudes (H_{c}). The impedance plane analysis demonstrates that r_{H}, which is defined as the ratio of the change in R_{s}(H_{dc}) and that in X_{s}(H_{dc}), is about 0.6 at H_{dc}<H_{c} and 0.1 at H_{dc}>H_{c}. The H_{dc} dependence of the surface impedance is qualitatively independent of the orientation of H_{dc}.Comment: REVTex 3.1, 5 pages, 6 EPS figures, submitted to Physica

    Properties of MnO on high Al2O3 slag and its mechanism used for flushing blast furnace (BF)

    Get PDF
    Flushing blast furnace by manganese ore was one of the important methods to recover the hearth inactivity caused by hearth accumulation. In this work, the properties and mechanism of the slag with different MnO content were researched, including the viscosity and critical temperature measured by rotating cylinder method, the mineral phase and microstructure confirmed by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and fourier transform infrared spectrometer (FTIR). The experiment results showed that during the process of flushing blast furnace, the appropriate and optimal MnO in the slag was 1,5 to 2,0 mas .%, the mechanism of flushing by MnO was that the tephroite whose melting point is low forms, the depolymerization of [SiO4]-tetrahedral structure caused by MnO addition also plays an important role in reducing the viscosity of the slag

    A dynamics-driven approach to precision machines design for micro-manufacturing and its implementation perspectives

    Get PDF
    Precision machines are essential elements in fabricating high quality micro products or micro features and directly affect the machining accuracy, repeatability and efficiency. There are a number of literatures on the design of industrial machine elements and a couple of precision machines commercially available. However, few researchers have systematically addressed the design of precision machines from the dynamics point of view. In this paper, the design issues of precision machines are presented with particular emphasis on the dynamics aspects as the major factors affecting the performance of the precision machines and machining processes. This paper begins with a brief review of the design principles of precision machines with emphasis on machining dynamics. Then design processes of precision machines are discussed, and followed by a practical modelling and simulation approaches. Two case studies are provided including the design and analysis of a fast tool servo system and a 5-axis bench-top micro-milling machine respectively. The design and analysis used in the two case studies are formulated based on the design methodology and guidelines

    Autonomous detection and anticipation of jam fronts from messages propagated by inter-vehicle communication

    Get PDF
    In this paper, a minimalist, completely distributed freeway traffic information system is introduced. It involves an autonomous, vehicle-based jam front detection, the information transmission via inter-vehicle communication, and the forecast of the spatial position of jam fronts by reconstructing the spatiotemporal traffic situation based on the transmitted information. The whole system is simulated with an integrated traffic simulator, that is based on a realistic microscopic traffic model for longitudinal movements and lane changes. The function of its communication module has been explicitly validated by comparing the simulation results with analytical calculations. By means of simulations, we show that the algorithms for a congestion-front recognition, message transmission, and processing predict reliably the existence and position of jam fronts for vehicle equipment rates as low as 3%. A reliable mode of operation already for small market penetrations is crucial for the successful introduction of inter-vehicle communication. The short-term prediction of jam fronts is not only useful for the driver, but is essential for enhancing road safety and road capacity by intelligent adaptive cruise control systems.Comment: Published in the Proceedings of the Annual Meeting of the Transportation Research Board 200

    Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of drosophila

    Get PDF
    Our understanding of the molecular mechanisms underlying sleep homeostasis is limited. We have taken a systematic approach to study neural signaling by the transmitter 5-hydroxytryptamine (5-HT) in drosophila. We have generated knockout and knockin lines for Trh, the 5-HT synthesizing enzyme and all five 5-HT receptors, making it possible for us to determine their expression patterns and to investigate their functional roles. Loss of the Trh, 5HT1a or 5HT2b gene decreased sleep time whereas loss of the Trh or 5HT2b gene diminished sleep rebound after sleep deprivation. 5HT2b expression in a small subset of, probably a single pair of, neurons in the dorsal fan-shaped body (dFB) is functionally essential: elimination of the 5HT2b gene from these neurons led to loss of sleep homeostasis. Genetic ablation of 5HT2b neurons in the dFB decreased sleep and impaired sleep homeostasis. Our results have shown that serotonergic signaling in specific neurons is required for the regulation of sleep homeostasis

    Transport in quantum wires

    Full text link
    With a brief introduction to one-dimensional channels and conductance quantisation in mesoscopic systems, we discuss some recent experimental puzzles in these systems, which include reduction of quantised conductances and an interesting {\it odd-even} effect in the presence of an in-plane magnetic field. We then discuss a recent non-homogeneous Luttinger liquid model proposed by us, which addresses and gives an explanation for the reduced conductances and the {\it odd-even} effect. We end with a brief summary and discussion of future projects.Comment: Talk presented at the International Discussion Meeting on Mesoscopic and Disordered systems, December, 2000, 16 pages, 2 figure

    Dynamics of Magnetized Bulk Viscous Strings in Brans-Dicke Gravity

    Full text link
    We explore locally rotationally symmetric Bianchi I universe in Brans-Dicke gravity with self-interacting potential by using charged viscous cosmological string fluid. We use a relationship between the shear and expansion scalars and also take the power law for scalar field as well as self-interacting potential. It is found that the resulting universe model maintains its anisotropic nature at all times due to the proportionality relationship between expansion and shear scalars. The physical implications of this model are discussed by using different parameters and their graphs. We conclude that this model corresponds to an accelerated expanding universe for particular values of the parameters.Comment: 17 pages, 6 figure
    corecore