151 research outputs found

    Effect of temperature on the hydrolysis of actinide elements in solution

    Get PDF
    Recent experimental data on the hydrolysis of U(VI), Pu(VI), Np(V), and Th(IV) at variable temperatures are summarized in this review. Data indicate that the hydrolysis reactions of U(VI), Pu(VI), Np(V), and Th (IV) are all enhanced when temperature is increased from 283 to 358 K. In general, the tendency of actinide elements in different oxidation states toward hydrolysis follows the order: An(IV) > An(VI) > An(V), which can be well described by the electrostatic model. The enhancement of hydrolysis at higher temperatures can be attributed to the increase of ionization of water with the increase of temperature. A few theoretical thermodynamic approaches for predicting the effect of temperature, including the constant enthalpy approach, the constant heat capacity approach, the DQUANT equation, and the Ryzhenko-Bryzgalin model, are tested with the experimental data

    Complexation of NpO2+ with Amine-Functionalized Diacetamide Ligands in Aqueous Solution: Thermodynamic, Structural, and Computational Studies

    Get PDF
    Complexation of Np(V) with three structurally related amine-functionalized diacetamide ligands, including 2,2'-azanediylbis( N, N'-dimethylacetamide) (ABDMA), 2,2'-(methylazanediyl)bis( N, N'-dimethylacetamide) (MABDMA), and 2,2'-(benzylazanediyl)bis( N, N'-dimethylacetamide) (BnABDMA), in aqueous solutions was investigated. The stability constants of two successive complexes, namely, NpO2L+ and NpO2L2+, where L stands for the ligands, were determined by absorption spectrophotometry. The results suggest that the stability constants of corresponding Np(V) complexes follow the trend: MABDMA > ABDMA ≈ BnABDMA. The data are discussed in terms of the basicity of the ligands and compared with those for the complexation of Np(V) with an ether oxygen-linked diacetamide ligand. Extended X-ray absorption fine structure data indicate that, similar to the complexation with Nd3+ and UO22+, the ligands coordinate to NpO2+ in a tridentate mode through the amine nitrogen and two oxygen atoms of the amide groups. Computational results, in conjunction with spectrophotometric data, verify that the 1:2 complexes (NpO2(L)2+) in aqueous solutions are highly symmetric with Np at the inversion center, so that the f-f transition of Np(V) is forbidden and NpO2(L)2+ does not display significant absorption in the near-IR region
    corecore