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 Summary. The dissolution of synthetic boehmite (γ-AlOOH) by 1-hydroxyethane-1,1-11 

diphosphonic acid (HEDPA) was examined in a series of batch adsorption/dissolution experiments. 12 

Additionally, the leaching behavior of 233U(VI) from boehmite was examined as a function of pH and 13 

HEDPA concentration. The results are discussed in terms of sludge washing procedures that may be 14 

utilized during underground tank waste remediation. In the pH range 4 to 10, complexation of Al(III) by 15 

HEDPA significantly enhanced dissolution of boehmite. This phenomenon was especially pronounced in 16 

the neutral pH region where the solubility of aluminum, in the absence of complexants, is limited by the 17 

formation of sparsely soluble aluminum hydroxides. At pH higher than 10, dissolution of synthetic 18 

boehmite was inhibited by HEDPA, likely due to sorption of Al(III):HEDPA complexes. Addition of 19 

HEDPA to equilibrated U(VI)-synthetic boehmite suspensions yielded an increase in the aqueous phase 20 

uranium concentration. Partitioning of uranium between the solid and aqueous phase is described in terms 21 

of U(VI):HEDPA speciation and dissolution of the boehmite solid phase.  22 

 23 

1. Introduction 24 

The underground storage tanks at the Hanford Site in Washington State, U.S.A. contain the byproducts 25 

from a number of spent nuclear fuel reprocessing processes including the bismuth phosphate (BiPO4), 26 

Redox and PUREX processes (1). Over time the waste has stratified into a salt cake, a supernatant phase, 27 

and an underlying sludge phase. Insoluble aluminum oxides make up a significant fraction of the sludge 28 

phase (1). Most of the transuranics have partitioned into the sludge phase, making vitrification of the 29 

sludge phase for geologic disposal a plausible treatment process (1). However, vitrification will be 30 
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prohibitively expensive due to the large volume of the sludge phase. Therefore, reduction of the volume 31 

of the sludge through dissolution of the aluminum oxides presents a favorable alternative.  32 

Various strategies of sludge leaching have been proposed and tested with sludge stimulants, 33 

including leaching with increasingly aggressive procedures (0.01M NaNO2 + 0.01M NaOH, 3M NaOH, 34 

0.05M glycolic acid + 0.10M NaOH, 0.10M HNO3, 2.0M HNO3, 0.5M HEDPA (1-hydroxyethane-1,1-35 

diphosphonic acid)) (1-3). It was found that the aluminosilicates cannot be removed using the baseline 36 

washing procedure (0.01 M NaNO2 + 0.01 M NaOH) and no single treatment achieved complete 37 

dissolution (1-3). Data from these experiments suggest that HEDPA could be an effective leachant to 38 

reduce the volume of waste sludge. In order to develop an efficient waste treatment process, further 39 

studies are needed to understand the extent of sludge phase dissolution and the partitioning of actinides 40 

(U, Np and Pu) during the leaching process.  41 

As a diphosphonic acid, HEDPA is known to form strong complexes with metal ions including 42 

actinides and aluminum across a wide pH range (4-6). In the absence of complexing ligands, aluminum 43 

(hydro)oxides are only sparingly soluble. Therefore, formation of Al(III):HEDPA complexes will 44 

promote sludge dissolution. However, partitioning of the actinides between the sludge and aqueous phase 45 

must also be understood in order to evaluate the viability of HEDPA for sludge washing. Formation of 46 

U(VI):HEDPA complexes affects the partitioning of uranium during the leaching of waste sludge with 47 

HEDPA. Previous experiments demonstrated that greater than 95% of the total uranium was leached from 48 

BiPO4, Redox, and PUREX sludge waste simulants by washing the sludge with 0.5 M HEDPA (3). 49 

Recently, a number of (UO2)mHhLl (where L stands for the fully deprotonated HEDPA anion) complexes, 50 

ranging from cationic to anionic, were identified in the pH region from 2 to 12 using potentiometry, 51 

calorimetry, and spectroscopic techniques (4). The thermodynamic data provided by Reed et al. (4) are 52 

used below to describe observed behavior of uranium in synthetic boehmite suspensions amended with 53 

HEDPA.   54 

The objective of this study was to investigate the ability of HEDPA to accomplish dissolution of 55 

synthetic boehmite and to examine the leaching of uranium during dissolution. A companion study was 56 



 3

also performed to examine the leaching of neptunium and plutonium under similar conditions (7). The 57 

data are expected to assist in the development of remediation strategies to be used during waste tank 58 

sludge washing. 59 

 60 

2. Materials and Methods 61 

2.1 Solid Phase Characterization 62 

The alumina used in this work was obtained from SASOL (trade name CATAPAL® B). Powder X-ray 63 

diffraction data, determined using a Seimens D-500 Diffractometer, indicate that the material has the 64 

crystal structure of boehmite (γ-AlOOH) although a significant amorphous character was indicated 65 

through broad peaks in the XRD spectra. A surface area of 354 m2 g-1 was measured by N2(g) adsorption 66 

using a Micrometrics BET Surface Area Analyzer. Potentiometric tirations were conducted with 100 g L-1 67 

boehmite suspensions in 0.01, 0.1, and 1.0 M NaCl to determine the point-of-zero-salt-effect (pzse). The 68 

titration results are shown in Figure 1.  The boehmite surface has a net positive or negative charge due to 69 

protonation or deprotonation of surface hydroxyl groups with changing pH.  The intersection of the 70 

curves for the three NaCl concentrations at pH 8.1 represents the point at which changes in the 71 

concentration of the background electrolyte have no effect on the net surface charge density (8). This 72 

value is consistent with the zero-point-of-charge measured for several synthetic aluminas (9-11). The 73 

apparent proton surface charge density was calculated assuming a surface site density of 1.7 sites per nm2.  74 

 75 

2.2 Preparation of Uranium Working Solution 76 

A stock solution of 233U(VI) tracer was obtained from the inventory at Lawrence Berkeley National 77 

Laboratory and purified by ion exchange. Analysis by α-spectroscopy indicated that the purified uranium 78 

contains 96.6% 233U and 3.3% 232U. A 1.1 x 10-4 M U(VI) working solution in 1M NaCl at pH 3 was 79 

prepared from the stock solution and used for sorption experiments. The concentration of uranium was 80 
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determined by liquid scintillation counting (LSC) using EcoLumeTM (MP Biomedicals Inc.) cocktail on 81 

a Wallac 1415 liquid scintillation counter. 82 

 83 

2.3 Dissolution of boehmite using HEDPA 84 

Working suspensions spanning the pH range 4 to 11 were prepared by equilibrating boehmite with 1.0 M 85 

NaCl then using these suspensions to prepare samples for batch experiments. The batch experiments were 86 

performed in polypropylene centrifuge tubes shaken along their longitudinal axis on an orbital shaker at 87 

150 rpm. Batch dissolution experiments to examine the dissolution of boehmite by HEDPA were 88 

conducted in suspensions with a constant boehmite concentration of 600 mg L-1 (10 mM as Al) containing 89 

5 mM, 10 mM, and 50 mM HEDPA. At specified intervals, aliquots were removed and passed through 90 

200 nm nylon filters (Gelman Acrodisc). The aluminum concentration in the filtrate was measured using 91 

ICP-OES (Perkin Elmer, Optima 5300 DV). The pH of each suspension was adjusted towards an initial 92 

pH during sampling intervals using 0.1 and 0.01 M HCl and NaOH. At a few intervals, the HEDPA 93 

concentration in the filtrate was measured using a standard spectrophotometric method (12) employing a 94 

Cary 5G Spectrophotometer.  95 

A series of potentiometric titrations were attempted to examine Al(III):HEDPA complex 96 

formation in 1 M NaCl. However the titrations were unsuccessful as a white precipitate was observed 97 

across the pH range 4 to 9. To identify the precipitate, a series of solutions were prepared in 1 M NaCl 98 

with total Al(III):HEDPA ratios varying from 1:1 to 1:5. The precipitates were isolated via centrifugation 99 

and re-dissolved in ultra pure H2O.  The aluminum and HEDPA concentrations in the resulting solution 100 

were used to calculate the Al(III):HEDPA molar ratio in the solids.  Additionally, to examine the effect of 101 

the background electrolyte and electrolyte concentrations, Al(III):HEPDA precipitates were formed in 0.1 102 

and 1.0 M NaCl, KCl, NaNO3, and (CH3)4NCl as well as ultra pure water. Aliquots of each solution were 103 

passed through filters with nominal pore sizes ranging from 450 nm to 12 nm to determine the particle 104 

size range of the precipitates.   105 

 106 
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2.4 Sorption of uranium to boehmite  107 

The effect of HEDPA on uranium partitioning to synthetic boehmite was examined by amending 108 

equilibrated U(VI)-boehmite suspensions with HEDPA as described below. The uranium-boehmite 109 

suspensions were prepared by adding an aliquot of the U(VI) working solution to a boehmite suspension 110 

previously adjusted to a desired pH. The initial solution conditions were 6.1 μM U(VI), 660 mg L-1 111 

boehmite, and 1.0 M NaCl. The samples were mixed at 150 rpm for 10 days. Preliminary kinetic tests (in 112 

the absence of HEDPA) indicated steady state uranium partitioning was achieved after 7 days. At 113 

specified intervals, the soluble uranium concentration was determined in the filtrate obtained by passing a 114 

subsample through a centrifugal filter (30k molecular-weight-cut-off, Nanosep, Pall Life Sciences, 115 

estimated 12 nm pore size). The U concentration was measured by LSC as described above. 116 

 After 10 days, half of the uranium-boehmite suspensions were amended with a small volume of a 117 

0.05 M HEDPA stock solution (pH 7) to yield a suspension containing 5.4 mM HEDPA, 600 mg L-1 118 

boehmite, and 1M NaCl. The other half of the suspensions were amended with a 0.5 M HEDPA solution 119 

(pH 7) to yield a 50 mM, 600 mg L-1, 1 M NaCl suspension. The final U(VI) concentration was 5.8 μM in 120 

all suspensions. Boehmite-free control solutions were also amended to 5.4 mM HEDPA as described 121 

above. The soluble uranium concentration was determined via filtration followed by LSC as described 122 

above.  123 

  124 

3. Results and Discussion 125 

3.1 HEDPA Interactions with Boehmite: Sorption and Dissolution 126 

In the absence of complexants, the aqueous phase concentration of aluminum is limited by the formation 127 

of sparsely soluble Al (hydr)oxide solids, especially at circum-neutral pH values. As shown in Figure 2, 128 

addition of HEDPA clearly enhances the dissolution of boehmite. Across the pH range 5 to 9, samples 129 

amended with HEDPA have aluminum concentrations significantly higher than the HEDPA-free control 130 

system. The enhanced dissolution of boehmite in the presence of HEDPA is likely the results of formation 131 
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of AlmHhLl complexes (where L represents completely deprotonated HEDPA and m, h, and l are 132 

stoichiometric coefficients). The exact identity of specific complexes is uncertain at this point as the data 133 

available in the current literature are not in agreement (5,6) and our potentiometric experiments to obtain 134 

such data were unsuccessful due to the formation of a white precipitate across the neutral pH range (see 135 

Section 2.3). The nature and composition of the white precipitate was not fully determined, but analysis 136 

of the precipitate isolated from 1.0 M NaCl solutions with various Al(III):HEDPA molar ratios (from 1:1 137 

to 1:2.5) indicated that it always had a 1:1 Al(III):HEDPA molar ratio. The observation of a 1:1 138 

Al(III):HEDPA precipitate suggests that the low aluminum concentration across the neutral pH range 139 

(Figure 2) may be controlled by the solubility of an Al(III):HEDPA solid phase. It was worth noting that 140 

the constitution and concentration of the background electrolyte significantly affected the physical 141 

characteristics of the precipitate. Precipitates prepared in 1.0 M NaCl and 1.0 M NaNO3 tended to form 142 

clearly distinct particles while precipitates from 1.0 M (CH3)4NCl and 1.0 M KCl tended to have a gel-143 

like character, suggesting that sodium may cause significant aggregation of the Al(III):HEDPA particles. 144 

In addition, the concentration of NaCl was also found to have a significant effect on the precipitate. 145 

Solutions containing aluminum and HEDPA in a 2:5 molar ratio in ultra pure H2O, 0.1 M NaCl, or 1.0 M 146 

NaCl were passed through filters with pore sizes ranging from 450 nm to 12 nm. The fraction of soluble 147 

aluminum was found to be inversely related to the ionic strength of the solution.  148 

The concentrations of aluminum in more acidic (pH 4 to 5) and basic (pH > 10) regions were 149 

higher than those in the neutral pH region (Figure 2). After 2 days at pH 4 to 5, the concentrations of 150 

aluminum were comparable in systems with or without HEDPA. This is due to the formation of Al(OH)2+ 151 

and Al(OH)2
+ species yielding macromolar concentrations of aluminum in the absence of HEDPA. At pH 152 

> 10, the dominant aqueous species is Al(OH)4
-, yielding high aluminum concentrations in systems 153 

without HEDPA. At pH 11, the presence of HEDPA resulted in a lower aluminum concentration than that 154 

in the control system up to 16 days (Figure 2). This difference may be due to precipitation of an 155 

Al(III):HEDPA solid as described above or slow kinetics of dissociation of Al(III):HEDPA complexes 156 

from the mineral surface. Data in the literature indicate that phosphate may form multi-nuclear surface 157 
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complexes which could inhibit detachment of the metal-ligand complex from the surface or even inhibit 158 

dissolution (13).  Therefore, as HEDPA surface complexation would be expected to occur through the 159 

phosphate group, the inhibition of boehmite dissolution may be due to formation of a multi-dentate 160 

surface complex.  161 

 162 

3.2 Sorption of U(VI) to synthetic boehmite in the absence of HEDPA 163 

Data describing the sorption of uranium in the absence of HEDPA are shown in Figure 3. In the absence 164 

of HEDPA, approximately 15% of the uranium was sorbed at pH 4. As the pH increased, the fraction of 165 

uranium sorbed increased until relatively steady partitioning was reached at pH > 5. Above pH 5, 166 

approximately 90% of the total uranium was sorbed. The sorption edge occurring between pH 4 and 5 has 167 

been preciously observed by a number of researchers examining uranium sorption to aluminum 168 

(hydr)oxides (10, 14-15) This behavior is consistent with electrostatic attraction/repulsion between 169 

uranium and the boehmite surface. As shown in Figure 1, the boehmite surface charge transitions from a 170 

net positive to a net negative charge as the pH increases. This is due to the protonation and deprotonation 171 

of aluminol surface sites. At low pH values the positively charged uranyl dioxycation is repelled by the 172 

positively charged boehmite surface. As the pH was increased, both the net positive surface charge and 173 

the positive charge on the U(VI) species decreased (the latter due to hydrolysis), resulting in stronger 174 

sorption of U(VI) onto boehmite. The slight decrease in the fraction of uranium sorbed observed at higher 175 

pH values is presumed to be due to formation of soluble uranyl-carbonates. Although experiments were 176 

run in sealed centrifuge tubes, no effort was made to exclude carbonate from these experiments.  177 

 178 

3.3 Effect of HEDPA Concentration on U(VI) sorption to Boehmite 179 

Significant leaching of uranium from boehmite occurred rapidly following the amendment of the 180 

equilibrated uranium-boehmite suspensions to either 5 mM HEDPA or 50 mM HEDPA (Figure 4a and 181 

4b). At all pH values above 4.5, the addition of HEDPA resulted in rapid leaching of uranium from 182 

boehmite.  Four hours after amendment of the uranyl-boehmite suspensions with 5 mM HEDPA, the 183 
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fraction of uranium sorbed within the neutral pH region dropped from approximately 90% to 184 

approximately 50% (Figure 4a). Over the next 181 days, the concentration of uranium in the aqueous 185 

phase continued to increase. This slow step could be due to a rate limitation of the dissociation of a 186 

U(VI):HEDPA complex from the boehmite surface or due to continued dissolution of the boehmite phase. 187 

A similar effect was observed for the 50 mM HEDPA system although a larger fraction of the total 188 

uranium was leached into the aqueous phase within the first 4 hours (Figure 4b). Furthermore, the 189 

concentration of uranium in the aqueous phase after 181 days was significantly greater in the 50 mM 190 

HEDPA suspension relative to the 5 mM HEDPA suspension. The increased partitioning of uranium to 191 

the aqueous phase in the 50 mM HEDPA system is presumably due to enhanced dissolution of the 192 

boehmite solid phase, saturation of the remaining boehmite surface sites with HEDPA, and/or formation 193 

of U(VI):HEDPA complexes. As shown in Figure 2, after 135 days, at least 10% of the aluminum in 194 

boehmite suspensions with 50 mM HEDPA is soluble at all pH values examined (Al concentration greater 195 

than 1.0 x 10-3 M). At pH values less than 5, the boehmite was almost completely dissolved. Therefore the 196 

total boehmite surface available for sorption of uranium or U(VI):HEDPA complexes was significantly 197 

diminished in the 50 mM HEDPA system.  198 

Data in Figure 4a (for the 5 mM HEDPA system) indicate a loss of uranium from the aqueous 199 

phase at low pH values following the addition of HEDPA. Such loss appears to be consistent with the 200 

precipitation of U(VI):HEDPA complexes that was observed at low pH and low HEDPA:U(VI) ratios 201 

(<2) by Reed et al. (4). However, precipitation of a U(VI):HEDPA complex in these sorption experiments 202 

is not expected, because the HEDPA concentration is between 3 and 4 orders of magnitude higher than 203 

the uranium concentration and uranium was found to remain in the aqueous phase in all control (with 204 

HEDPA but without boehmite) solutions spanning the pH range 4 to 11 for the duration of these 205 

experiments. Possible reasons for the observed loss of U(VI) in the low pH regions of the 5 mM HEDPA 206 

system are discussed in Section 3.4.    207 

 208 

3.4 Effect of pH and HEDPA on U(VI) sorption to Boehmite  209 
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3.4.1 Uranium partitioning in the acidic pH region: Unless specified, the effects of pH on uranium 210 

partitioning will be discussed below in terms of the 5.4 mM HEDPA system (Figure 4a). At pH 4, the 211 

addition of HEDPA increased the fraction of uranium sorbed from 15% to 47% within 4 hours (the 212 

fraction remained unchanged for the remainder of the experiment up to 181 days). This is the only sample 213 

in which the addition of HEDPA caused an increase in the sorption of uranium. The uranium partitioning 214 

at low pH observed in this system is similar to the observations of Cheng et al. (16) who found that 215 

phosphate caused increased uranium sorption to goethite-coated sands at low pH values, relative to 216 

phosphate free suspensions. A similar pH effect was also observed by Guo et al. (17) and Guo et al., (18) 217 

when examining thorium and uranium sorption in alumina suspensions amended with phosphate. Guo et 218 

al., (18) proposed that the enhanced sorption of uranium was due to formation of ternary surface 219 

complexes with U(VI) and phosphate.  220 

Assuming that the behavior of the phosphate groups of HEDPA may be similar to that of 221 

phosphate, the increased uranium sorption observed in this work was also likely caused by the formation 222 

of a ternary U-HEDPA-AlOH surface complex. As the speciation plot of U(VI) in a 5.4 mM HEDPA 223 

solution shows, a number of anionic U(VI):HEDPA species exist in low pH regions (Figure 5). On the 224 

other hand, the boehmite surface carries a net positive charge at low pH values. Therefore the observed 225 

increase in sorption could be due to sorption of anionic species such as UO2L2H4
2- or UO2L2H3

3-. Similar 226 

ternary surface complexes have been proposed to explain increased metal sorption at low pH values in the 227 

presence of anionic metal-ligand complexes (19-21). In this case, sorption of the metal is proposed to be 228 

due to the formation of a ternary complex where the ligand bridges the mineral surface and the metal. 229 

Such a geometry could be conceptualized utilizing the two phosphate groups of HEDPA. Within this pH 230 

region (pH ~4), HEDPA will be present as H2L2- (based upon the pKa values reported by Reed et al., (4)) 231 

and will be attracted to the positively charged boehmite surface. Nowack and Stone (22) examined 232 

HEDPA sorption to goethite and found that at low pH values, deprotonated anionic HEDPA species were 233 

attracted to the positively charged goethite surface. As the pH increased, and the surface developed a net 234 
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negative charge, the sorption of HEDPA decreased (22). He et al., (23) observed similar pH effects when 235 

examining phosphate sorption to alumina. 236 

3.4.2 Uranium partitioning at circumneutral pH : Across the pH region from 5 to 8, the fraction 237 

of sorbed uranium decreased significantly following the addition of HEDPA (Figure 4a). After 1 and 6 238 

days, the fraction of uranium sorbed increased as the pH was increased from approximately 5 to 6.5. 239 

Across the pH range 6.5 to 9, a relatively steady partitioning of uranium was observed for the sampling 240 

intervals at 0.2, 1, and 6 days. After 6 days, a more general trend appeared in the data where the fraction 241 

of uranium sorbed was found to increase as the pH increased from pH 5. It is noteworthy that 242 

coprecipitation of uranium with an Al(III):HEDPA complex as discussed above is also a possibility. 243 

However, the increase in uranium sorption with increasing pH is not consistent with coprecipitation as the 244 

primary mechanism for loss of uranium from the aqueous phase. Across this circumneutral pH region (5 245 

to 9), the anionic U(VI):HEDPA species UO2L2H2
4-, UO2L2H5-, and UO2L2

6- are predominant (Figure 5) 246 

and the boehmite surface maintains a net positive surface charge (Figure 1). This will allow for an 247 

attractive force between the anionic U(VI):HEDPA complexes and the positively charged sites on the 248 

boehmite surface. Since both free HEDPA and free U(VI) are known to sorb within this pH region, a 249 

ternary surface complex could form through either uranium or HEDPA.  250 

3.4.3 Uranium partitioning above pH 9: Above pH 9, the fraction of sorbed uranium decreased 251 

significantly following the addition of HEDPA (Figure 4a). There was a slight decrease in the fraction of 252 

uranium sorbed over the first 59 days followed by a significant decrease after 180 days. The rate at which 253 

uranium was leached into the aqueous phase was similar to the rate of boehmite dissolution (Figure 2), 254 

indicating that dissolution was a primary factor controlling uranium partitioning within this pH region. At 255 

earlier time intervals, the fraction of uranium sorbed across the pH region 9 to 11 was higher relative to 256 

the circumneutral pH region. This difference is proposed to be due to a change in the partitioning of 257 

HEDPA within this pH region. Nowack and Stone (22) observed a significant decrease in the fraction of 258 

HEDPA sorbed to goethite above pH 9. This is consistent with the full deprotonation of HEDPA in 1.0 M 259 

NaCl (pKa4 = 9.5, measured in this work, data not shown). Therefore, boehmite sorption sites which are 260 
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occupied by HEDPA at neutral and acidic pH regions may be available for sorption of uranyl either as a 261 

uranyl hydroxide or as a U(VI):HEDPA complex. In the absence of a complexing ligand, uranium 262 

strongly sorbs to aluminum (oxy)hydroxides at high pH values (Figure 3 and references 10, 14, 15). 263 

Therefore formation of a U(VI):hydroxide or U(VI):HEDPA (whereby surface complexation would occur 264 

through uranium rather than through the phosphate groups of HEDPA) surface complex is feasible. 265 

However, verification of such complexes through spectroscopy would be desirable, if not necessary, prior 266 

to incorporation of such species into modeling efforts.  267 

 268 

4. Conclusions 269 

Results from this work show that HEDPA is capable of significantly enhancing the solubility of 270 

aluminum hydroxides. The degree of enhancement is dependent upon the bulk solution pH and the 271 

concentration of HEDPA. HEDPA is capable of leaching uranium from synthetic boehmite through solid 272 

phase dissolution and/or the formation of U(VI):HEDPA complexes. Across the pH range examined, the 273 

speciation of U(VI):HEDPA complexes affects the partitioning of uranium between the solid and aqueous 274 

phase. Partitioning of uranium was observed to vary with pH and correlated with the partitioning of 275 

HEDPA and HEDPA-promoted boehmite dissolution. The sorption of uranium to boehmite in the 276 

presence of HEDPA is proposed to be through ternary U(VI):HEDPA surface complexes. However, no 277 

spectroscopic evidence is provided to indicate formation of such complexes. These results indicate that 278 

HEDPA could be used to reduce the volume of the aluminum component of sludge within the Hanford 279 

waste tanks. However, because a significant fraction of uranium (and presumably other actinides) could 280 

also be leached from boehmite by the addition of HEDPA, careful consideration of the partitioning of the 281 

actinides must be made if a strong complexant such as HEDPA is selected for sludge washing.  282 
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  348 
Figure 1: Potentiometric titrations of 100 g L-1 boehmite suspensions in 0.01 M NaCl ( ), 0.10 349 
M NaCl ( ), and 1.0 M NaCl ( ).  350 
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 351 
 352 
Figure 2: Effect of HEDPA on synthetic boehmite (γ-AlOOH) dissolution, [γ-AlOOH] = 600 mg 353 
L-1 (10 mM as Al3+), [NaCl] = 1.0 M.  (A) [HEDPA] = 5.4 mM; (B) [HEDPA] = 50 mM. 354 
Symbols: ( ) 2 days, ( ) 16 days, ( ) 36 days, ( ) 86 days, and ( ) 135 days. ( ) Control system 355 
contains no HEDPA and was measured after 135 days. Error bars, typically contained within 356 
area of symbol at 95% certainty, have been removed for clarity. 357 
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 358 
Figure 3: Fraction of uranium sorbed to boehmite versus pH after 10 day equilibration. System 359 
parameters: [γ-AlOOH] = 0.66 g L-1; [U(VI)] = 6.1 μM; [NaCl] = 1.0 M.  360 
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 361 
Figure 4: Effect of 5 mM (A) or  50 mM HEDPA (B) on Uranium Sorption to Boehmite: 362 
Symbols ( ) 0.2 days, ( ) 1 day, ( ) 6 days, ( ) 14 days, ( ) 30 days, ( ) 59 days, and ( ) 180 363 
days. For comparison, data from Figure 3 showing steady state distribution (10 day equilibrium) 364 
of U(VI) without HEDPA present is shown ( ). System parameters: [γ-AlOOH] = 600 mg L-1; 365 
[NaCl] = 1.0 M; [U(VI)] = 5.8 μM.  Error bars removed for clarity, average 2σ= 3% propagated 366 
from counting statistics. 367 
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 368 
Figure 5: Speciation of U(VI) in 5.4 mM HEDPA and 1.0 M NaCl, calculated with the 369 
thermodynamic constants reported by Reed et al., (4). L stands for the fully deprotonated 370 
HEDPA anion. 371 
 372 


