27,164 research outputs found

    Human comfort in relation to sinusoidal vibration

    Get PDF
    An investigation was made to assess the overall subjective comfort levels to sinusoidal excitations over the range 1 to 19 Hz using a two axis electrohydraulic vibration simulator. Exposure durations of 16 minutes, 25 minutes, 1 hour, and 2.5 hours have been considered. Subjects were not exposed over such durations, but were instructed to estimate the overall comfort levels preferred had they been constantly subjected to vibration over such durations

    Initial stages of cavitation damage and erosion on copper and brass tested in a rotating disk device

    Get PDF
    In view of the differences in flow and experimental conditions, there has been a continuing debate as to whether or not the ultrasonic method of producing cavitation damage is similar to the damage occurring in cavitating flow systems, namely, venturi and rotating disk devices. In this paper, the progress of cavitation damage during incubation periods on polycrystalline copper and brass tested in a rotating disk device is presented. The results indicate several similarities and differences in the damage mechanism encountered in a rotating disk device (which simulates field rotary devices) and a magnetostriction apparatus. The macroscopic erosion appears similar to that in the vibratory device except for nonuniform erosion and apparent plastic flow during the initial damage phase

    Gender and Growth Assessment - Nigeria: Macroeconomic Study

    Get PDF

    Gender and Growth Assessment - Nigeria: National Overview

    Get PDF

    Gender and Growth Assessment - Nigeria: Bauchi, Cross River, Kano and Lagos State Reports

    Get PDF

    Fire Safety Analysis of a Railway Compartment using Computational Fluid Dynamics

    Get PDF
    Trains are considered to be the safest on-land transportation means for both passengers and cargo. Train accidents have been mainly disastrous, especially in case of fire, where the consequences are extensive loss of life and goods. The fire would generate smoke and heat which would spread quickly inside the railway compartments. Both heat and smoke are the primary reasons of casualties in a train. This study has been carried out to perform numerical analysis of fire characteristics in a railway compartment using commercial Computational Fluid Dynamics code ANSYS. Non-premixed combustion model has been used to simulate a fire scenario within a railway compartment, while Shear Stress Transport k-ω turbulence model has been used to accurately predict the hot air turbulence parameters within the compartment. The walls of the compartment have been modelled as no-slip stationary adiabatic walls, as is observed in real life conditions. Carbon dioxide concentration (CO2), temperature distribution and air flow velocity within the railway compartment has been monitored. It has been observed that the smoke above the fire source flows to both sides of the compartment. The highest temperature zone is located downstream the fire source, and gradually decreases with the increase in the distance from the fire source. It can be seen that CFD can be used as an effective tool in order to analyse the evolution of fire in railway compartments with reasonable accuracy. The paper also briefly discusses the topical reliability issues
    • …
    corecore