155 research outputs found

    Time is of the essence : Coupling sleep-wake and circadian neurobiology to the antidepressant effects of ketamine

    Get PDF
    Several studies have demonstrated the effectiveness of ketamine in rapidly alleviating depression and suicidal ideation. Intense research efforts have been undertaken to expose the precise mechanism underlying the antidepressant action of ketamine; however, the translation of findings into new clinical treatments has been slow. This translational gap is partially explained by a lack of understanding of the function of time and circadian timing in the complex neurobiology around ketamine. Indeed, the acute pharmacological effects of a single ketamine treatment last for only a few hours, whereas the antidepressant effects peak at around 24 hours and are sustained for the following few days. Numerous studies have investigated the acute and long-lasting neurobiological changes induced by ketamine; however, the most dramatic and fundamental change that the brain undergoes each day is rarely taken into consideration. Here, we explore the link between sleep and circadian regulation and rapid-acting antidepressant effects and summarize how diverse phenomena associated with ketamine’s antidepressant actions – such as cortical excitation, synaptogenesis, and involved molecular determinants – are intimately connected with the neurobiology of wake, sleep, and circadian rhythms. We review several recently proposed hypotheses about rapid antidepressant actions, which focus on sleep or circadian regulation, and discuss their implications for ongoing research. Considering these aspects may be the last piece of the puzzle necessary to gain a more comprehensive understanding of the effects of rapid-acting antidepressants on the brain.Several studies have demonstrated the effectiveness of ketamine in rapidly alleviating depression and suicidal ideation. Intense research efforts have been undertaken to expose the precise mechanism underlying the antidepressant action of ketamine; however, the translation of findings into new clinical treatments has been slow. This translational gap is partially explained by a lack of understanding of the function of time and circadian timing in the complex neurobiology around ketamine. Indeed, the acute pharmacological effects of a single ketamine treatment last for only a few hours, whereas the antidepressant effects peak at around 24 hours and are sustained for the following few days. Numerous studies have investigated the acute and long-lasting neurobiological changes induced by ketamine; however, the most dramatic and fundamental change that the brain undergoes each day is rarely taken into consideration. Here, we explore the link between sleep and circadian regulation and rapid -acting antidepressant effects and summarize how diverse phenomena associated with ketamine's antidepressant actions - such as cortical excitation, synaptogenesis, and involved molecular determinants - are intimately connected with the neurobiology of wake, sleep, and circadian rhythms. We review several recently proposed hypotheses about rapid antidepressant actions, which focus on sleep or circadian regulation, and discuss their implications for ongoing research. Considering these aspects may be the last piece of the puzzle necessary to gain a more comprehensive understanding of the effects of rapid-acting antidepressants on the brain. (c) 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).Peer reviewe

    P11 promoter methylation predicts the antidepressant effect of electroconvulsive therapy

    Get PDF
    Although electroconvulsive therapy (ECT) is among the most effective treatment options for pharmacoresistant major depressive disorder (MDD), some patients still remain refractory to standard ECT practise. Thus, there is a need for markers reliably predicting ECT non/response. In our study, we have taken a novel translational approach for discovering potential biomarkers for the prediction of ECT response. Our hypothesis was that the promoter methylation of p11, a multifunctional protein involved in both depressive-like states and antidepressant treatment responses, is differently regulated in ECT responders vs. nonresponders and thus be a putative biomarker of ECT response. The chronic mild stress model of MDD was adapted with the aim to obtain rats that are resistant to conventional antidepressant drugs (citalopram). Subsequently, electroconvulsive stimulation (ECS) was used to select responders and nonresponders, and compare p11 expression and promoter methylation. In the rat experiments we found that the gene promoter methylation and expression of p11 significantly correlate with the antidepressant effect of ECS. Next, we investigated the predictive properties of p11 promoter methylation in two clinical cohorts of patients with pharmacoresistant MDD. In a proof-of-concept clinical trial in 11 patients with refractory MDD, higher p11 promoter methylation was found in responders to ECT. This finding was replicated in an independent sample of 65 patients with pharmacoresistant MDD. This translational study successfully validated the first biomarker reliably predicting the responsiveness to ECT. Prescreening of this biomarker could help to identify patients eligible for first-line ECT treatment and also help to develop novel antidepressant treatment procedures for depressed patients resistant to all currently approved antidepressant treatments.Peer reviewe

    Characterization and source identification of a fine particle episode in Finland

    Get PDF
    A strong long-range transported (LRT) fine particle (PM2.5) episode occurred from March 17–22, 2002 over large areas of Finland. Most of the LRT particle mass was in the submicrometre size fraction. The number of concentrations of 90–500 nm particles increased by a factor of 5.6 during the episode, but the concentrations of particles smaller than 90 nm decreased. This reduction of the smallest particles was caused by suppressed gas-to-particle conversion due to the vapour uptake of LRT particles. Individual particle analyses using SEM/EDX showed that the proportion of sulphur-rich particles rose strongly during the episode and that the relative weight percentage of potassium was unusually high in these particles. The median S/K ratios of S-rich particles were 2.1 at the beginning of the episode, 5.2 at the peak stage of the episode and 8.9 during the reference days. The high proportion of K is a clear indication of emissions from biomass burning, because K is a good tracer of biomass-burning aerosols. Trajectories and satellite detections of fire areas indicated that the main source of biomass-burning aerosols was large-scale agricultural field burning in the Baltic countries, Belarus, Ukraine and Russia. The higher S/K ratio of S-rich particles during the peak stage was obviously due to the increased proportion of fossil fuel-burning emissions in the LRT particle mass, since air masses arrived from the more polluted areas of Europe at that time. The concentrations of sulphate, total nitrate and total ammonium increased during the episode. Our results suggest that large-scale agricultural field burning may substantially affect PM2.5 concentrations under unfavourable meteorological conditions even at distances over 1000 km from the burning areas

    Vertical-external-cavity surface-emitting lasers and quantum dot lasers

    Full text link
    The use of cavity to manipulate photon emission of quantum dots (QDs) has been opening unprecedented opportunities for realizing quantum functional nanophotonic devices and also quantum information devices. In particular, in the field of semiconductor lasers, QDs were introduced as a superior alternative to quantum wells to suppress the temperature dependence of the threshold current in vertical-external-cavity surface-emitting lasers (VECSELs). In this work, a review of properties and development of semiconductor VECSEL devices and QD laser devices is given. Based on the features of VECSEL devices, the main emphasis is put on the recent development of technological approach on semiconductor QD VECSELs. Then, from the viewpoint of both single QD nanolaser and cavity quantum electrodynamics (QED), a single-QD-cavity system resulting from the strong coupling of QD cavity is presented. A difference of this review from the other existing works on semiconductor VECSEL devices is that we will cover both the fundamental aspects and technological approaches of QD VECSEL devices. And lastly, the presented review here has provided a deep insight into useful guideline for the development of QD VECSEL technology and future quantum functional nanophotonic devices and monolithic photonic integrated circuits (MPhICs).Comment: 21 pages, 4 figures. arXiv admin note: text overlap with arXiv:0904.369

    Rapid-acting antidepressants and the regulation of TrkB neurotrophic signalling-Insights from ketamine, nitrous oxide, seizures and anaesthesia

    Get PDF
    Increased glutamatergic neurotransmission and synaptic plasticity in the prefrontal cortex have been associated with the rapid antidepressant effects of ketamine. Activation of BDNF (brain-derived neurotrophic factor) receptor TrkB is considered a key molecular event for antidepressant-induced functional and structural synaptic plasticity. Several mechanisms have been proposed to underlie ketamine's effects on TrkB, but much remains unclear. Notably, preliminary studies suggest that besides ketamine, nitrous oxide (N2O) can rapidly alleviate depressive symptoms. We have shown nitrous oxide to evoke TrkB signalling preferentially after the acute pharmacological effects have dissipated (ie after receptor disengagement), when slow delta frequency electroencephalogram (EEG) activity is up-regulated. Our findings also demonstrate that various anaesthetics and sedatives activate TrkB signalling, further highlighting the complex mechanisms underlying TrkB activation. We hypothesize that rapid-acting antidepressants share the ability to regulate TrkB signalling during homeostatically evoked slow-wave activity and that this mechanism is important for sustained antidepressant effects. Our observations urge the examination of rapid and sustained antidepressant effects beyond conventional receptor pharmacology by focusing on brain physiology and temporally distributed signalling patterns spanning both wake and sleep. Potential implications of this approach for the improvement of current therapies and discovery of novel antidepressants are discussed.Peer reviewe

    Novel transcripts reveal a complex structure of the human TRKA gene and imply the presence of multiple protein isoforms

    Get PDF
    Publisher Copyright: © 2015 Luberg et al.Background: Tropomyosin-related kinase A (TRKA) is a nerve growth factor (NGF) receptor that belongs to the tyrosine kinase receptor family. It is critical for the correct development of many types of neurons including pain-mediating sensory neurons and also controls proliferation, differentiation and survival of many neuronal and non-neuronal cells. TRKA (also known as NTRK1) gene is a target of alternative splicing which can result in several different protein isoforms. Presently, three human isoforms (TRKAI, TRKAII and TRKAIII) and two rat isoforms (TRKA L0 and TRKA L1) have been described. Results: We show here that human TRKA gene is overlapped by two genes and spans 67 kb-almost three times the size that has been previously described. Numerous transcription initiation sites from eight different 5' exons and a sophisticated splicing pattern among exons encoding the extracellular part of TRKA receptor indicate that there might be a large variety of alternative protein isoforms. TrkA genes in rat and mouse appear to be considerably shorter, are not overlapped by other genes and display more straightforward splicing patterns. We describe the expression profile of alternatively spliced TRKA transcripts in different tissues of human, rat and mouse, as well as analyze putative endogenous TRKA protein isoforms in human SH-SY5Y and rat PC12 cells. We also characterize a selection of novel putative protein isoforms by portraying their phosphorylation, glycosylation and intracellular localization patterns. Our findings show that an isoform comprising mainly of TRKA kinase domain is capable of entering the nucleus. Conclusions: Results obtained in this study refer to the existence of a multitude of TRKA mRNA and protein isoforms, with some putative proteins possessing very distinct properties.publishersversionPeer reviewe

    Overview of Toroidal and Poloidal Momentum Transport Studies in JET

    Get PDF
    Abstract. This paper reports on the recent studies of toroidal and poloidal momentum transport in JET. The ratio of the global energy confinement time to the momentum confinement is found to be close to τ E /τ φ =1 except for the low density discharges where the ratio is τ E /τ φ =2-3. On the other hand, local transport analysis of tens of discharges shows that the ratio of the local effective momentum diffusivity to the ion heat diffusivity is χ φ /χ i 0.1-0.4 rather than unity, as expected from the global confinement times and used in ITER predictions. The apparent discrepancy in the global and local momentum versus ion heat transport is explained by the fact that momentum confinement within edge pedestal is worse than that of the ion heat and thus, momentum pedestal is weaker than that of ion temperature. Another observation is that while the T i has a threshold in R/L Ti and profiles are stiff, the gradient in v φ increases with increasing torque and no threshold is found. Predictive transport simulations also confirm that χ φ /χ i 0.1-0.4 reproduce the core toroidal velocity profiles well. Concerning poloidal velocities on JET, the experimental measurements show that the carbon poloidal velocity can be an order of magnitude above the neo-classical estimate within the ITB. This significantly affects the calculated radial electric field and therefore, the E×B flow shear used for example in transport simulations. The Weiland model reproduces the onset, location and strength of the ITB well when the experimental poloidal rotation is used while it does not predict an ITB using the neo-classical poloidal velocity. The most plausible explanation for the generation of the anomalous poloidal velocity is the turbulence driven flow through the Reynold's stress. Both TRB and CUTIE turbulence codes show the existence of an anomalous poloidal velocity, being significantly larger than the neo-classical values. And similarly to experiments, the poloidal velocity profiles peak in the vicinity of the ITB and is caused by flow due to the Reynold's stress
    corecore