1,522 research outputs found

    Colonoscopic screening for colorectal cancer improves quality of life measures: a population-based screening study

    Get PDF
    BACKGROUND: Screening asymptomatic individuals for neoplasia can have adverse consequences on quality of life. Colon cancer screening is widespread but the quality of life (QOL) consequences are unknown. This study determined the impact of screening colonoscopy on QOL measures in asymptomatic average-risk participants. METHODS: Asymptomatic male and female participants aged 55–74 years were randomly selected from the Australian Electoral Roll or six primary care physicians' databases. Participants completed the Short-Form (SF-36) Quality of Life Assessment at baseline and at a mean of 39 days after colonoscopy. Outcome measures were (i) significant changes in raw scores in any of the eight SF-36 domains assessed following colonoscopic screening and (ii) improvements or declines in previously validated categories, representing clinically significant changes, within any of the eight SF-36 domains. RESULTS: Baseline QOL measures were similar to those of a matched general population sample. Role Limitations due to Emotions, Mental Health and Vitality raw scores significantly improved following colonoscopy (P < 0.05, 2-tailed t-test). Health ratings according to Category were similar (same clinical status) in the majority of participants. However, 30% participants recorded clinically significant improvement in the Mental Health and Vitality domains (P < 0.05, Wilcoxon Signed-Ranks test). This improvement was not offset by declines in other domains or in other participants. Improvement in QOL was not related to colonoscopy results. CONCLUSION: Average-risk persons benefit significantly from colon cancer screening with colonoscopy, improving in Mental Health and Vitality domains of Quality of Life. This improvement is not offset by declines in other domains

    How can polygenic inheritance be used in population screening for common diseases?

    Get PDF
    Advances in genomics have near-term impact on diagnosis and management of monogenic disorders. For common complex diseases, the use of genomic information from multiple loci (polygenic model) is generally not useful for diagnosis and individual prediction. In principle, the polygenic model could be used along with other risk factors in stratified population screening to target interventions. For example, compared to age-based criterion for breast, colorectal, and prostate cancer screening, adding polygenic risk and family history holds promise for more efficient screening with earlier start and/or increased frequency of screening for segments of the population at higher absolute risk than an established screening threshold; and later start and/or decreased frequency of screening for segments of the population at lower risks. This approach, while promising, faces formidable challenges for building its evidence base and for its implementation in practice. Currently, it is unclear whether or not polygenic risk can contribute enough discrimination to make stratified screening worthwhile. Empirical data are lacking on population-based age-specific absolute risks combining genetic and non-genetic factors, on impact of polygenic risk genes on disease natural history, as well as information on comparative balance of benefits and harms of stratified interventions. Implementation challenges include difficulties in integration of this information in the current health-care system in the United States, the setting of appropriate risk thresholds, and ethical, legal, and social issues. In an era of direct-to-consumer availability of personal genomic information, the public health and health-care systems need to prepare for an evidence-based integration of this information into population screening

    Association study of genetic variation in DNA repair pathway genes and risk of basal cell carcinoma

    Get PDF
    DNA repair plays a critical role in protecting the genome from ultraviolet radiation and maintaining the genomic integrity of cells. Genetic variants in DNA repair-related genes can influence an individual's DNA repair capacity, which may be related to the risk of developing basal cell carcinoma (BCC). We comprehensively assessed the associations of 2,965 independent single-nucleotide polymorphisms (SNPs) across 165 DNA repair pathway genes with BCC risk in a genome-wide association meta-analysis totaling 17,187 BCC cases and 287,054 controls from two data sets. After multiple testing corrections, we identified three SNPs (rs2805831 upstream of XPA: OR = 0.93, P = 1.35 × 10-6 ; rs659857 in exon of MUS81: OR = 1.06, P = 3.09 × 10-6 and rs57343616 in 3' UTR of NABP2: OR = 1.11, P = 6.47 × 10-6 ) as significantly associated with BCC risk in meta-analysis, and all of them were nominally significant in both data sets. Furthermore, rs659857 [T] was significantly associated with decreased expression of MUS81 mRNA in the expression quantitative trait locus (eQTL) analysis. Our findings suggest that the inherited common variation in three DNA repair genes-XPA, MUS81 and NABP2-may be involved in the development of BCC. To our knowledge, our study is the first report thoroughly examining the effects of SNPs across DNA repair pathway genes on BCC risk based on a genome-wide association meta-analysis

    A novel role for microglia in minimizing excitotoxicity

    Get PDF
    Microglia are the abundant, resident myeloid cells of the central nervous system (CNS) that become rapidly activated in response to injury or inflammation. While most studies of microglia focus on this phenomenon, little is known about the function of 'resting' microglia, which possess fine, branching cellular processes. Biber and colleagues, in a recent paper in Journal of Neuroinflammation, report that ramified microglia can limit excitotoxicity, an important insight for understanding mechanisms that limit neuron death in CNS disease

    Revisiting the technical validation of tumour biomarker assays: how to open a Pandora's box

    Get PDF
    A tumour biomarker is a characteristic that is objectively measured and evaluated in tumour samples as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. The development of a biomarker contemplates distinct phases, including discovery by hypothesis-generating preclinical or exploratory studies, development and qualification of the assay for the identification of the biomarker in clinical samples, and validation of its clinical significance. Although guidelines for the development and validation of biomarkers are available, their implementation is challenging, owing to the diversity of biomarkers being developed. The term 'validation' undoubtedly has several meanings; however, in the context of biomarker research, a test may be considered valid if it is 'fit for purpose'. In the process of validation of a biomarker assay, a key point is the validation of the methodology. Here we discuss the challenges for the technical validation of immunohistochemical and gene expression assays to detect tumour biomarkers and provide suggestions of pragmatic solutions to address these challenges

    International Variation in Screening Mammography Interpretations in Community-Based Programs

    Get PDF
    Variations in mammography interpretations may have important clinical and economic implications. To evaluate international variability in mammography interpretation, we analyzed published reports from community-based screening programs from around the world

    Discovery and Validation of Molecular Biomarkers for Colorectal Adenomas and Cancer with Application to Blood Testing

    Get PDF
    BACKGROUND & AIMS: Colorectal cancer incidence and deaths are reduced by the detection and removal of early-stage, treatable neoplasia but we lack proven biomarkers sensitive for both cancer and pre-invasive adenomas. The aims of this study were to determine if adenomas and cancers exhibit characteristic patterns of biomarker expression and to explore whether a tissue-discovered (and validated) biomarker is differentially expressed in the plasma of patients with colorectal adenomas or cancer. METHODS: Candidate RNA biomarkers were identified by oligonucleotide microarray analysis of colorectal specimens (222 normal, 29 adenoma, 161 adenocarcinoma and 50 colitis) and validated in a previously untested cohort of 68 colorectal specimens using a custom-designed oligonucleotide microarray. One validated biomarker, KIAA1199, was assayed using qRT-PCR on plasma extracted RNA from 20 colonoscopy-confirmed healthy controls, 20 patients with adenoma, and 20 with cancer. RESULTS: Genome-wide analysis uncovered reproducible gene expression signatures for both adenomas and cancers compared to controls. 386/489 (79%) of the adenoma and 439/529 (83%) of the adenocarcinoma biomarkers were validated in independent tissues. We also identified genes differentially expressed in adenomas compared to cancer. KIAA1199 was selected for further analysis based on consistent up-regulation in neoplasia, previous studies and its interest as an uncharacterized gene. Plasma KIAA1199 RNA levels were significantly higher in patients with either cancer or adenoma (31/40) compared to neoplasia-free controls (6/20). CONCLUSIONS: Colorectal neoplasia exhibits characteristic patterns of gene expression. KIAA1199 is differentially expressed in neoplastic tissues and KIAA1199 transcripts are more abundant in the plasma of patients with either cancer or adenoma compared to controls

    Comparing the old and new generation SELDI-TOF MS: implications for serum protein profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the PBS-IIc SELDI-TOF MS apparatus has been extensively used in the search for better biomarkers, issues have been raised concerning the semi-quantitative nature of the technique and its reproducibility. To overcome these limitations, a new SELDI-TOF MS instrument has been introduced: the PCS 4000 series. Changes in this apparatus compared to the older one are a.o. an increased dynamic range of the detector, an adjusted configuration of the detector sensitivity, a raster scan that ensures more complete desorption coverage and an improved detector attenuation mechanism. In the current study, we evaluated the performance of the old PBS-IIc and new PCS 4000 series generation SELDI-TOF MS apparatus.</p> <p>Methods</p> <p>To this end, two different sample sets were profiled after which the same ProteinChip arrays were analysed successively by both instruments. Generated spectra were analysed by the associated software packages. The performance of both instruments was evaluated by assessment of the number of peaks detected in the two sample sets, the biomarker potential and reproducibility of generated peak clusters, and the number of peaks detected following serum fractionation.</p> <p>Results</p> <p>We could not confirm the claimed improved performance of the new PCS 4000 instrument, as assessed by the number of peaks detected, the biomarker potential and the reproducibility. However, the PCS 4000 instrument did prove to be of superior performance in peak detection following profiling of serum fractions.</p> <p>Conclusion</p> <p>As serum fractionation facilitates detection of low abundant proteins through reduction of the dynamic range of serum proteins, it is now increasingly applied in the search for new potential biomarkers. Hence, although the new PCS 4000 instrument did not differ from the old PBS-IIc apparatus in the analysis of crude serum, its superior performance after serum fractionation does hold promise for improved biomarker detection and identification.</p
    • …
    corecore