274 research outputs found

    Chemokines and Chemokine Receptors: Standing at the Crossroads of Immunobiology and Neurobiology

    Get PDF
    There are several molecular entities common to the immune and nervous systems. Salient among them are the chemokines and their receptors, which play remarkably varied and potent roles in immunobiology and neurobioloogy. This review limns several illustrative examples and presents general principles of chemokine action that are manifest in both systems. These include the following: (1) chemokines tend equally to arrest cells and to make them move, in the process of positioning target cells with spatiotemporal precision; (2) signaling and nonsignaling receptors collaborate to adjust the chemokine environment for maximal efficacy; and (3) expression of a single chemokine receptor on circulating blood cells and parenchymal cells is often used to coordinate complex tissue responses. The challenge is to integrate knowledge of the roles of key receptors (as well as their ligands) into a coherent account of events during pathologic processes, in order to guide therapeutic development

    Macrophage Migration Inhibitory Factor, the Zelig of Cytokines, Is a Chaperone for SOD1 in Non-Neuronal Cells

    Get PDF
    Pathogenic properties of mutant SOD1 in ALS likely involve binding to mitochondrial and ER membranes. In this issue of Neuron, Israelson et al. (2015) show that motor neurons, selectively vulnerable in ALS, lack a chaperone that precludes mSOD1 binding intracellular membranes in other cells. This chaperone is identified as the pleiotropic cytokine macrophage migration inhibitory factor

    Human Brain Microvascular Endothelial Cells and Umbilical Vein Endothelial Cells Differentially Facilitate Leukocyte Recruitment and Utilize Chemokines for T Cell Migration

    Get PDF
    Endothelial cells that functionally express blood brain barrier (BBB) properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs) and human umbilical vein endothelial cells (HUVECs). With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER) and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation

    Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1

    Get PDF
    Multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS) is the leading cause of non-traumatic neurological disability in young adults. Immune mediated destruction of myelin and oligodendrocytes is considered the primary pathology of MS, but progressive axonal loss is the major cause of neurological disability. In an effort to understand microglia function during CNS inflammation, our laboratory focuses on the fractalkine/CX3CR1 signaling as a regulator of microglia neurotoxicity in various models of neurodegeneration. Fractalkine (FKN) is a transmembrane chemokine expressed in the CNS by neurons and signals through its unique receptor CX3CR1 present in microglia. During experimental autoimmune encephalomyelitis (EAE), CX3CR1 deficiency confers exacerbated disease defined by severe inflammation and neuronal loss. The CX3CR1 human polymorphism I249/M280 present in ∼20% of the population exhibits reduced adhesion for FKN conferring defective signaling whose role in microglia function and influence on neurons during MS remains unsolved. The aim of this study is to assess the effect of weaker signaling through hCX3CR1I249/M280 during EAE. We hypothesize that dysregulated microglial responses due to impaired CX3CR1 signaling enhance neuronal/axonal damage. We generated an animal model replacing the mouse CX3CR1 locus for the hCX3CR1I249/M280 variant. Upon EAE induction, these mice exhibited exacerbated EAE correlating with severe inflammation and neuronal loss. We also observed that mice with aberrant CX3CR1 signaling are unable to produce FKN and ciliary neurotrophic factor during EAE in contrast to wild type mice. Our results provide validation of defective function of the hCX3CR1I249/M280 variant and the foundation to broaden the understanding of microglia dysfunction during neuroinflammation. © 2018 Cardona et al

    Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease

    Get PDF
    Neuroinflammation is an important contributor to Alzheimer's disease (AD) pathogenesis, as underscored by the recent identification of immune-related genetic risk factors for AD, including coding variants in the gene TREM2 (triggering receptor expressed on myeloid cells 2). Understanding TREM2 function promises to provide important insights into how neuroinflammation contributes to AD pathology. However, studies so far have produced seemingly conflicting results, with reports that amyloid pathology can be both decreased and increased in TREM2-deficient AD mouse models. In this study, we unify these previous findings by demonstrating that TREM2 deficiency ameliorates amyloid pathology early, but exacerbates it late in disease progression in the APPPS1–21 mouse model of AD. We also demonstrate that TREM2 deficiency decreases plaque-associated myeloid cell accumulation by reducing cell proliferation, specifically late in pathology. In addition, TREM2 deficiency reduces myeloid cell internalization of amyloid throughout pathology, but decreases inflammation-related gene transcript levels selectively late in disease progression. Together, these results suggest that TREM2 plays distinct functional roles at different stages in AD pathology
    corecore