10 research outputs found

    Experimental results on the use of genetic algorithms for scaling virtualized network functions

    Get PDF
    © 2015 IEEE.Network Function Virtualization (NFV) is bringing closer the possibility to truly migrate enterprise data centers into the cloud. However, for a Cloud Service Provider to offer such services, important questions include how and when to scale out/in resources to satisfy dynamic traffic/application demands. In previous work [1], we have proposed a platform called Network Function Center (NFC) to study research issues related to NFV and Network Functions (NFs). In a NFC, we assume NFs to be implemented on virtual machines that can be deployed in any server in the network. In this paper we present further experiments on the use of Genetic Algorithms (GAs) for scaling out/in NFs when the traffic changes dynamically. We combined data from previous empirical analyses [2], [3] to generate NF chains and for getting traffic patterns of a day and run simulations of resource allocation decision making. We have implemented different fitness functions with GA and compared their performance when scaling out/in over time

    Machine Learning  Modelling of the Relationship between Weather and Paddy Yield in Sri Lanka

    No full text
    This paper presents the development of crop-weather models for the paddy yield in Sri Lanka based on nine weather indices, namely, rainfall, relative humidity (minimum and maximum), temperature (minimum and maximum), wind speed (morning and evening), evaporation, and sunshine hours. The statistics of seven geographical regions, which contribute to about two-thirds of the country’s total paddy production, were used for this study. The significance of the weather indices on the paddy yield was explored by employing Random Forest (RF) and the variable importance of each of them was determined. Pearson’s correlation and Spearman’s correlation were used to identify the behavior of correlation in a positive or negative direction. Further, the pairwise correlation among the weather indices was examined. The results indicate that the minimum relative humidity and the maximum temperature during the paddy cultivation period are the most influential weather indices. Moreover, RF was used to develop a paddy yield prediction model and four more techniques, namely, Power Regression (PR), Multiple Linear Regression (MLR) with stepwise selection, forward (step-up) selection, and backward (step-down) elimination, were used to benchmark the performance of the machine learning technique. Their performances were compared in terms of the Root Mean Squared Error (RMSE), Correlation Coefficient (R), Mean Absolute Error (MAE), and the Mean Absolute Percentage Error (MAPE). As per the results, RF is a reliable and accurate model for the prediction of paddy yield in Sri Lanka, demonstrating a very high R of 0.99 and the least MAPE of 1.4%

    A discrete-Time feedback controller for containerized cloud applications

    No full text
    Modern Web applications exploit Cloud infrastructures to scale their resources and cope with sudden changes in the workload. While the state of practice is to focus on dynamically adding and removing virtual machines, we advocate that there are strong benefits in containerizing the applications and in scaling the containers. In this paper we present an autoscaling technique that allows containerized applications to scale their resources both at the virtual machine (VM) level and at the container level. Furthermore, applications can combine this infrastructural adaptation with platform-level adaptation. The autoscaling is made possible by our planner, which consists of a grey-box discrete-Time feedback controller. The work has been validated using two application benchmarks deployed to Amazon EC2. Our experiments show that our planner outperforms Amazon's AutoScaling by 78% on average without containers; and that the introduction of containers allows us to improve by yet another 46% on average

    Efficient autonomic and elastic resource management techniques in cloud environment: taxonomy and analysis

    No full text
    corecore