10,493 research outputs found

    Topology and Polarisation of Subbeams Associated With Pulsar 0943+10's ``Drifting''-Subpulse Emission: I. Analysis of Arecibo 430- and 111-MHz Observations

    Full text link
    The ``drifting'' subpulses exhibited by some radio pulsars have fascinated both observers and theorists for 30 years, and have been widely regarded as one of the most critical and potentially insightful aspects of their emission. Here, we report on detailed studies of pulsar B0943+10, whose nearly coherent sequences of ``drifting'' subpulses have permitted us to identify their origin as a system of subbeams that appear to circulate around the star's magnetic axis. We introduce several new techniques of analysis, and we find that both the primary and secondary features in the star's fluctuation spectra are aliases of their actual values. We have also developed a method of tracing the underlying pattern responsible for the observed sequences, using a ``cartographic'' transform and its inverse, permitting us to study the characteristics of the polar-cap emission ``map'' and to confirm that such a ``map'' in turn represents the observed sequence. We apply these techniques to the study of three different Arecibo observations. The ``B''-mode sequences are consistent in revealing that the emission pattern consists of 20 subbeams, which rotate around the magnetic axis in about 37 periods or 41 seconds. Even in the ``Q'' mode sequence, we find evidence of a compatible circulation time. The similarity of the subbeam patterns at different radio frequencies strongly suggests that the radiation is produced within a set of columns, which extend from close to the stellar surface up though the emission region and reflect some manner of a ``seeding''phenomenon at their base. The subbeam emission is then tied neither to the stellar surface nor to the field.Comment: 25 pages with 26 figures; in press in MNRA

    Circulating Subbeam Systems and the Physics of Pulsar Emission

    Full text link
    The purpose of this paper is to suggest how detailed single-pulse observations of ``slow'' radio pulsars may be utilized to construct an empirical model for their emission. It links the observational synthesis developed in a series of papers by Rankin starting in the 1980s to the more recent empirical feedback model of Wright (2003a) by regarding the entire pulsar magnetosphere as a non-steady, non-linear interactive system with a natural built-in delay. It is argued that the enhanced role of the outer gap in such a system indicates an evolutionary link to younger pulsars, in which this region is thought to be highly active, and that pulsar magnetospheres should no longer be seen as being ``driven'' by events on the neutron star's polar cap, but as having more in common with planetary magnetospheres and auroral phenomena.Comment: 15 pages, 3 figure

    Pulsar "Drifting"-Subpulse Polarization: No Evidence for Systematic Polarization-Angle Rotations

    Get PDF
    Polarization-angle density displays are given for pulsars B0809+74 and B2303+30, which exhibit no evidence of the systematic polarization-angle rotation within individual subpulses previously reported for these two stars. The ``drifting'' subpulses of both pulsars exhibit strikingly linear and circular polarization which appears to reflect the characteristics of two nearly orthogonally polarized emission ``modes''--along which the severe average-profile depolarization that is characteristic of their admixture at comparable overall intensities.Comment: Accepted for publication in Astronomy & Astrophysic

    Improved laboratory gradiometer can be a field survey instrument

    Get PDF
    Improvements made to quartz gradiometer minimize or eliminate disturbing effects from known error sources and permit sensitivity of + or - 1 times 10 to the minus 9th power/sec sq or better and measuring accuracy of + or - 5 times 10 to the minus 9th power/sec sq

    The `Periodic Nulls' of Radio Pulsar J1819+1305

    Full text link
    We present a single-pulse study of the four-component pulsar J1819+1305, whose ``null'' pulses bunch at periodic intervals of around 57 times the rotation period. The emission bursts between the null bunches exhibit characteristic modulations at two shorter periodicities of approximately 6.2 and 3 times the rotation period, the former found largely in the two outer components, and the latter only in the first component. Many bursts commence with bright emission in second component, exhibit positive six-period drift across the full profile width, and end with 3-period modulation in the leading component. The 57-period cycle can be modelled geometrically as a sparsely filled subbeam carousel with nulls appearing whenever our line of sight intersects a circulating empty region. This interpretation is compatible with other recent evidence for periodic, carousel-related nulling and appears to support the physics of a polar-gap emission model for ``drifting'' subpulses, but the subtle structure of the emission bursts defies an easy explanation.Comment: 8 pages, 9 figure

    The uncoupling limit of identical Hopf bifurcations with an application to perceptual bistability

    Get PDF
    We study the dynamics arising when two identical oscillators are coupled near a Hopf bifurcation where we assume a parameter ϵ\epsilon uncouples the system at ϵ=0\epsilon=0. Using a normal form for N=2N=2 identical systems undergoing Hopf bifurcation, we explore the dynamical properties. Matching the normal form coefficients to a coupled Wilson-Cowan oscillator network gives an understanding of different types of behaviour that arise in a model of perceptual bistability. Notably, we find bistability between in-phase and anti-phase solutions that demonstrates the feasibility for synchronisation to act as the mechanism by which periodic inputs can be segregated (rather than via strong inhibitory coupling, as in existing models). Using numerical continuation we confirm our theoretical analysis for small coupling strength and explore the bifurcation diagrams for large coupling strength, where the normal form approximation breaks down

    Gravity gradient preliminary investigations on exhibit ''A'' Final report

    Get PDF
    Quartz microbalance gravity gradiometer performance test

    Revised Pulsar Spindown

    Full text link
    We address the issue of electromagnetic pulsar spindown by combining our experience from the two limiting idealized cases which have been studied in great extent in the past: that of an aligned rotator where ideal MHD conditions apply, and that of a misaligned rotator in vacuum. We construct a spindown formula that takes into account the misalignment of the magnetic and rotation axes, and the magnetospheric particle acceleration gaps. We show that near the death line aligned rotators spin down much slower than orthogonal ones. In order to test this approach, we use a simple Monte Carlo method to simulate the evolution of pulsars and find a good fit to the observed pulsar distribution in the P-Pdot diagram without invoking magnetic field decay. Our model may also account for individual pulsars spinning down with braking index n < 3, by allowing the corotating part of the magnetosphere to end inside the light cylinder. We discuss the role of magnetic reconnection in determining the pulsar braking index. We show, however, that n ~ 3 remains a good approximation for the pulsar population as a whole. Moreover, we predict that pulsars near the death line have braking index values n > 3, and that the older pulsar population has preferentially smaller magnetic inclination angles. We discuss possible signatures of such alignment in the existing pulsar data.Comment: 8 pages, 7 figures; accepted to Ap
    corecore