53 research outputs found

    Regional facial asymmetries in unilateral orofacial clefts

    Get PDF
    SummaryObjectives: Assess facial asymmetry in subjects with unilateral cleft lip (UCL), unilateral cleft lip and alveolus (UCLA), and unilateral cleft lip, alveolus, and palate (UCLP), and to evaluate which area of the face is most asymmetrical. Methods: Standardized three-dimensional facial images of 58 patients (9 UCL, 21 UCLA, and 28 UCLP; age range: 8.6-12.3 years) and 121 controls (age range 9-12 years) were mirrored and distance maps were created. Absolute mean asymmetry values were calculated for the whole face, cheek, nose, lips, and chin. One-way analysis of variance, Kruskal-Wallis, and t-test were used to assess the differences between clefts and controls for the whole face and separate areas. Results: Clefts and controls differ significantly for the whole face as well as in all areas. Asymmetry is distributed differently over the face for all groups. In UCLA, the nose was significantly more asymmetric compared with chin and cheek (P = 0.038 and 0.024, respectively). For UCL, significant differences in asymmetry between nose and chin and chin and cheek were present (P = 0.038 and 0.046, respectively). In the control group, the chin was the most asymmetric area compared to lip and nose (P = 0.002 and P = 0.001, respectively) followed by the nose (P = 0.004). In UCLP, the nose, followed by the lips, was the most asymmetric area compared to chin, cheek (P < 0.001 and P = 0.016, respectively). Limitations: Despite division into regional areas, the method may still exclude or underrate smaller local areas in the face, which are better visualized in a facial colour coded distance map than quantified by distance numbers. The UCL subsample is small. Conclusion: Each type of cleft has its own distinct asymmetry pattern. Children with unilateral clefts show more facial asymmetry than children without cleft

    Regional facial asymmetries and attractiveness of the face.

    Get PDF
    OBJECTIVE Facial attractiveness is an important factor in our social interactions. It is still not entirely clear which factors influence the attractiveness of a face and facial asymmetry appears to play a certain role. The aim of the present study was to assess the association between facial attractiveness and regional facial asymmetries evaluated on three-dimensional (3D) images. METHODS 3D facial images of 59 (23 male, 36 female) young adult patients (age 16-25 years) before orthodontic treatment were evaluated for asymmetry. The same 3D images were presented to 12 lay judges who rated the attractiveness of each subject on a 100mm visual analogue scale. Reliability of the method was assessed with Bland-Altman plots and Cronbach's alpha coefficient. RESULTS All subjects showed a certain amount of asymmetry in all regions of the face; most asymmetry was found in the chin and cheek areas and less in the lip, nose and forehead areas. No statistically significant differences in regional facial asymmetries were found between male and female subjects (P > 0.05). Regression analyses demonstrated that the judgement of facial attractiveness was not influenced by absolute regional facial asymmetries when gender, facial width-to-height ratio and type of malocclusion were controlled (P > 0.05). LIMITATIONS A potential limitation of the study could be that other biologic and cultural factors influencing the perception of facial attractiveness were not controlled for. CONCLUSIONS A small amount of asymmetry was present in all subjects assessed in this study, and asymmetry of this magnitude may not influence the assessment of facial attractiveness

    Accuracy and Reproducibility of Voxel Based Superimposition of Cone Beam Computed Tomography Models on the Anterior Cranial Base and the Zygomatic Arches

    Get PDF
    Superimposition of serial Cone Beam Computed Tomography (CBCT) scans has become a valuable tool for three dimensional (3D) assessment of treatment effects and stability. Voxel based image registration is a newly developed semi-automated technique for superimposition and comparison of two CBCT scans. The accuracy and reproducibility of CBCT superimposition on the anterior cranial base or the zygomatic arches using voxel based image registration was tested in this study. 16 pairs of 3D CBCT models were constructed from pre and post treatment CBCT scans of 16 adult dysgnathic patients. Each pair was registered on the anterior cranial base three times and on the left zygomatic arch twice. Following each superimposition, the mean absolute distances between the 2 models were calculated at 4 regions: anterior cranial base, forehead, left and right zygomatic arches. The mean distances between the models ranged from 0.2 to 0.37 mm (SD 0.08–0.16) for the anterior cranial base registration and from 0.2 to 0.45 mm (SD 0.09–0.27) for the zygomatic arch registration. The mean differences between the two registration zones ranged between 0.12 to 0.19 mm at the 4 regions. Voxel based image registration on both zones could be considered as an accurate and a reproducible method for CBCT superimposition. The left zygomatic arch could be used as a stable structure for the superimposition of smaller field of view CBCT scans where the anterior cranial base is not visible

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery – comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution

    No full text
    The blood–brain barrier is considered the leading physiological obstacle hindering the transport of neurotherapeutics to brain cells. The application of nanotechnology coupled with surfactant coating is one of the efficacious tactics overcoming this barrier. The aim of this study was to develop lipid polymer hybrid nanoparticles (LPHNPs), composed of a polymeric core and a phospholipid shell entangled, for the first time, with PEG-based surfactants (SAA) viz. TPGS or Solutol HS 15 in comparison with the gold standard Tween 80, aiming to enhance brain delivery and escape opsonization. LPHNPs were successfully prepared using modified single-step nanoprecipitation technique, loaded with the flavonoid rutin (RU), extracted from the flowers of Calendula officinalis L., and recently proved as a promising anti-Alzheimer. The effect of the critical process parameters (CPP) viz. PLGA amount, Wlecithin/WPLGA ratio, and Tween 80 concentration on critical quality attributes (CQA); entrapment, size and size distribution, was statistically analyzed via design of experiments, and optimized using the desirability function. The optimized CPP were maintained while substituting Tween 80 with other PEG-SAA. All hybrid particles exhibited spherical shape with perceptible lipid shells. The biocompatibility of the prepared NPs was confirmed by hemolysis test. The pharmacokinetic assessments, post-intravenous administration to rats, revealed a significant higher RU bioavailability for NPs relative to drug solution. Biodistribution studies proved non-significant differences in RU accumulation within brain, but altered phagocytic uptake among various LPHNPs. The present study endorses the successful development of LPHNPs using PEG-SAA, and confirms the prospective applicability of TPGS and Solutol in enhancing brain delivery

    UV filters and high refractive index materials based on carboxymethyl cellulose sodium and CuO@ZnO core/shell nanoparticles

    No full text
    Abstract Nanoparticles have substantially contributed to the field of skincare products with ultraviolet (UV) filters to preserve human skin from sun damage. Thus, the current study aims to develop new polymer nanocomposites for the efficient block of UV light that results from the stratospheric ozone layer loss. Co-precipitation method was used to successfully synthesis CuO@ZnO core/shell NPs with a well-crystalline monoclinic CuO core and wurzite ZnO shell. Using the casting method, core/shell NPs were successfully introduced to carboxymethyl cellulose sodium (CMC). The CMC nanocomposites displayed considerably broader optical response extending from near-ultraviolet to visible light, which was likely due to heterojunction between the p-CuO core and n-ZnO shell and defects originating from the synthetic process. The transmittance of pure CMC in the UV, visible, and near IR regions is significantly reduced with the addition of 2 and 4 wt% of CuO@ZnO core/shell NPs to CMC. 99% of UV light is absorbed when 4 wt% of CuO@ZnO core/shell NPs are added. The addition of different concentrations of CMC nanocomposite to one of the sunblock in Egyptian market were studied and showing the highest Sun Protection Factor of 22. Moreover, optical dispersion parameters and refractive index were improved strongly with core/shell NPs addition

    Structural and UV-blocking properties of carboxymethyl cellulose sodium/CuO nanocomposite films

    No full text
    Abstract Nanoparticles have made a substantial contribution to the field of skincare products with UV filters in preserving human skin from sun damage. The current study aims to create new polymer nanocomposite filters for the efficient block of UV light that results from the stratospheric ozone layer loss. The casting approach was used to add various mass fractions of copper oxide nanoparticles (CuO-NPs) to a solution of carboxymethyl cellulose (CMC). The amorphous nature of CMC was revealed by XRD analysis, with the intensity of the typical peak of virgin polymer in the nanocomposite spectrum decreasing dramatically as the doping amount was increased. The FTIR spectra revealed the functional groups of CMC and the good interaction between the CMC chain and CuO-NPs. Optical experiments revealed that the optical transmittance of pure CMC was over 80%, whereas it dropped to 1% when CuO-NPs content was increased to 8 wt.%. Surprisingly, the inclusion of CuO-NPs considerably improved the UV blocking property of the films extended from the UV region (both UV-A: 320–400 nm and UV-B: 280–320 nm) to the visible region. Optical band gap of CMC decreased sharply with increasing CuO concentration. The tunable optical characteristics can be utilized in UV- blocking filters and various optoelectronics applications

    Monosodium glutamate affects cognitive functions in male albino rats

    No full text
    Abstract Background Monosodium Glutamate is a silent toxin in our food, especially our kids’ food. Some of the products in the market contain MSG in a level exceed the European limit. Method Sixty male albino rats divided into three groups, control group, and treated groups, the first with a low dose of MSG (1/20 LD50) and the second with a high dose of MSG (1/10 LD50). All animals examined for cognitive function, serotonin level. The second part in this study, examination of some commercial food for the presence of MSG and its level by HPLC. Results MSG affected the cognitive function of treated rats in small and high doses of MSG. The weight of the animals in treated group with a high dose of MSG was significantly increased in comparison with the control group. Also, the cognitive function of the rats administered MSG affected significantly either in low dose and in high dose. Some of the studied commercial food in the market like Kapsa and Indomi contains a higher level of MSG more than the European limit. Conclusion MSG has many dangerous effects on health especially kids, so it is so necessary to declare its presence or absence and level on the labels of the products
    corecore