14 research outputs found

    AFM imaging of functionalized carbon nanotubes on biological membranes

    Get PDF
    Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging

    Modification of the loops in the ligand-binding site turns avidin into a steroid-binding protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Engineered proteins, with non-immunoglobulin scaffolds, have become an important alternative to antibodies in many biotechnical and therapeutic applications. When compared to antibodies, tailored proteins may provide advantageous properties such as a smaller size or a more stable structure.</p> <p>Results</p> <p>Avidin is a widely used protein in biomedicine and biotechnology. To tailor the binding properties of avidin, we have designed a sequence-randomized avidin library with mutagenesis focused at the loop area of the binding site. Selection from the generated library led to the isolation of a steroid-binding avidin mutant (sbAvd-1) showing micromolar affinity towards testosterone (K<sub>d </sub>~ 9 μM). Furthermore, a gene library based on the sbAvd-1 gene was created by randomizing the loop area between <it>β</it>-strands 3 and 4. Phage display selection from this library led to the isolation of a steroid-binding protein with significantly decreased biotin binding affinity compared to sbAvd-1. Importantly, differential scanning calorimetry and analytical gel-filtration revealed that the high stability and the tetrameric structure were preserved in these engineered avidins.</p> <p>Conclusions</p> <p>The high stability and structural properties of avidin make it an attractive molecule for the engineering of novel receptors. This methodology may allow the use of avidin as a universal scaffold in the development of novel receptors for small molecules.</p

    Real-time visualization of conformational changes within single MloK1 cyclic nucleotide-modulated channels

    No full text
    Eukaryotic cyclic nucleotide-modulated (CNM) ion channels perform various physiological roles by opening in response to cyclic nucleotides binding to a specialized cyclic nucleotide-binding domain. Despite progress in structure-function analysis, the conformational rearrangements underlying the gating of these channels are still unknown. Here, we image ligand-induced conformational changes in single CNM channels from Mesorhizobium loti (MloK1) in real-time, using high-speed atomic force microscopy. In the presence of cAMP, most channels are in a stable conformation, but a few molecules dynamically switch back and forth (blink) between at least two conformations with different heights. Upon cAMP depletion, more channels start blinking, with blinking heights increasing over time, suggestive of slow, progressive loss of ligands from the tetramer. We propose that during gating, MloK1 transitions from a set of mobile conformations in the absence to a stable conformation in the presence of ligand and that these conformations are central for gating the pore

    Molecular recognition force spectroscopy

    Full text link
    This chapter describes the state of the art in molecular recognition force spectroscopy performed by AFM. The different aspects of the topic are discussed, as the appropriate techniques for the functionalization of cantilever tips and for the preparation of (biological) samples. The principles of single-molecule force spectroscopy are then explained, together with exciting and recent examples on synthetic and biological samples. Finally, the main techniques to map molecular recognition interactions are reviewed and discussed in terms of performances. Novel and interesting applications illustrate the use of these imaging methods
    corecore