161 research outputs found

    Underlying physics of thermal actuation in composite MEMS

    Get PDF
    Integrated micro- and nano-electromechanical (N/MEMS) sensor and actuator technology has become increasingly important to any applications with parallel processes, which clearly provide advantages in fields such as e.g. high-speed imaging and precision metrology of large substrates. Although micro-fabrication processes for integrated technology are well-established, there remain several fundamental research questions regarding optimized design parameters for an improved performance of sensors and actuators. In this work we investigate the underlying physics of a thermal actuator of a composite MEMS structure for a selected range of design parameters such as e.g. layer thicknesses, number of layers, as well as material properties. We derive and present a one-dimensional heat conduction model of an M-layered composite slab and investigate the heat transfer across three layers using Green’s function. The work, although entirely theoretical here, finds direct meaning and implementation in our ongoing collaborative work on MEMS arrays for Atomic Force Microscopy (AFM)

    Processing Issues in Top-Down Approaches to Quantum Computer Development in Silicon

    Get PDF
    We describe critical processing issues in our development of single atom devices for solid-state quantum information processing. Integration of single 31P atoms with control gates and single electron transistor (SET) readout structures is addressed in a silicon-based approach. Results on electrical activation of low energy (15 keV) P implants in silicon show a strong dose effect on the electrical activation fractions. We identify dopant segregation to the SiO2/Si interface during rapid thermal annealing as a dopant loss channel and discuss measures of minimizing it. Silicon nanowire SET pairs with nanowire width of 10 to 20 nm are formed by electron beam lithography in SOI. We present first results from Coulomb blockade experiments and discuss issues of control gate integration for sub-40nm gate pitch levels

    Local formation of nitrogen-vacancy centers in diamond by swift heavy ions

    Full text link
    We exposed nitrogen-implanted diamonds to beams of swift uranium and gold ions (~1 GeV) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV- centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV- yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV-center formation by swift heavy ions such as electronic excitations and thermal spikes. While forming NV centers with low efficiency, swift heavy ions enable the formation of three dimensional NV- assemblies over relatively large distances of tens of micrometers. Further, our results show that NV-center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.Comment: to be published in Journal of Applied Physic

    Phase-modulated standing wave interferometer

    Get PDF
    Standing wave interferometers (SWIs) show enormous potential for miniaturization because of their simple linear optical set-up, consisting only of a laser source, a measuring mirror and two standing wave sensors for obtaining quadrature signals. To reduce optical influences on the standing wave and avoid the need for an exact and long-term stable sensor-to-sensor distance, a single-sensor set-up was developed with a phase modulation by forced oscillation of the measuring mirror. When the correct modulation stroke is applied, the harmonics in the sensor signal can be used for obtaining quadrature signals for phase demodulation and direction discrimination

    Heterodyne standing-wave interferometer with improved phase stability

    Get PDF
    This paper describes a standing-wave interferometer with two laser sources of different wavelengths, diametrically opposed and emitting towards each other. The resulting standing wave has an intensity profile which is moving with a constant velocity, and is directly detected inside the laser beam by two thin and transparent photo sensors. The first sensor is at a fixed position, serving as a phase reference for the second one which is moved along the optical axis, resulting in a frequency shift, proportional to the velocity. The phase difference between both sensors is evaluated for the purpose of interferometric length measurements

    Sensitivity improvement to active piezoresistive AFM probes using focused ion beam processing

    Get PDF
    This paper presents a comprehensive modeling and experimental verification of active piezoresistive atomic force microscopy (AFM) cantilevers, which are the technology enabling high-resolution and high-speed surface measurements. The mechanical structure of the cantilevers integrating Wheatstone piezoresistive was modified with the use of focused ion beam (FIB) technology in order to increase the deflection sensitivity with minimal influence on structure stiness and its resonance frequency. The FIB procedure was conducted based on the finite element modeling (FEM) methods. In order to monitor the increase in deflection sensitivity, the active piezoresistive cantilever was deflected using an actuator integrated within, which ensures reliable and precise assessment of the sensor properties. The proposed procedure led to a 2.5 increase in the deflection sensitivity, which was compared with the results of the calibration routine and analytical calculations
    • …
    corecore