8 research outputs found

    Repair of Oxidative DNA Damage and Cancer: Recent Progress in DNA Base Excision Repair

    Get PDF
    SIGNIFICANCE: Reactive oxygen species (ROS) are generated by exogenous and environmental genotoxins, but also arise from mitochondria as byproducts of respiration in the body. ROS generate DNA damage of which pathological consequence, including cancer is well established. Research efforts are intense to understand the mechanism of DNA base excision repair, the primary mechanism to protect cells from genotoxicity caused by ROS. RECENT ADVANCES: In addition to the notion that oxidative DNA damage causes transformation of cells, recent studies have revealed how the mitochondrial deficiencies and ROS generation alter cell growth during the cancer transformation. CRITICAL ISSUES: The emphasis of this review is to highlight the importance of the cellular response to oxidative DNA damage during carcinogenesis. Oxidative DNA damage, including 7,8-dihydro-8-oxoguanine, play an important role during the cellular transformation. It is also becoming apparent that the unusual activity and subcellular distribution of apurinic/apyrimidinic endonuclease 1, an essential DNA repair factor/redox sensor, affect cancer malignancy by increasing cellular resistance to oxidative stress and by positively influencing cell proliferation. FUTURE DIRECTIONS: Technological advancement in cancer cell biology and genetics has enabled us to monitor the detailed DNA repair activities in the microenvironment. Precise understanding of the intracellular activities of DNA repair proteins for oxidative DNA damage should provide help in understanding how mitochondria, ROS, DNA damage, and repair influence cancer transformation

    Polyubiquitination of Apurinic/Apyrimidinic Endonuclease 1 by Parkin

    Get PDF
    Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential protein crucial for repair of oxidized DNA damage not only in genomic DNA but also in mitochondrial DNA. Parkin, a tumor suppressor and Parkinson\u27s disease (PD) associated gene, is an E3 ubiquitin ligase crucial for mitophagy. Although DNA damage is known to induce mitochondrial stress, Parkin\u27s role in regulating DNA repair proteins has not been elucidated. In this study, we examined the possibility of Parkin‐dependent ubiquitination of APE1. Ectopically expressed APE1 was degraded by Parkin and PINK1 via polyubiquitination in mouse embryonic fibroblast cells. PD‐causing mutations in Parkin and PINK1 abrogated APE1 ubiquitination. Interaction of APE1 with Parkin was observed by co‐immunoprecipitation, proximity ligation assay, and co‐localization in the cytoplasm. N‐terminal deletion of 41 amino acid residues in APE1 significantly reduced the Parkin‐dependent APE1 degradation. These results suggested that Parkin directly ubiquitinated N‐terminal Lys residues in APE1 in the cytoplasm. Modulation of Parkin and PINK1 activities under mitochondrial or oxidative stress caused moderate but statistically significant decrease of endogenous APE1 in human cell lines including SH‐SY5Y, HEK293, and A549 cells. Analyses of glioblastoma tissues showed an inverse relation between the expression levels of APE1 and Parkin. These results suggest that degradation of endogenous APE1 by Parkin occur when cells are stressed to activate Parkin, and imply a role of Parkin in maintaining the quality of APE1, and loss of Parkin may contribute to elevated APE1 levels in glioblastoma

    Pre-Replicative Repair of Oxidized Bases Maintains Fidelity in Mammalian Genomes: The Cowcatcher Role of NEIL1 DNA Glycosylase

    No full text
    Genomic fidelity in the humans is continuously challenged by genotoxic reactive oxygen species (ROS) generated both endogenously during metabolic processes, and by exogenous agents. Mispairing of most ROS-induced oxidized base lesions during DNA replication induces mutations. Although bulky base adducts induced by ultraviolet light and other environmental mutagens block replicative DNA polymerases, most oxidized base lesions do not block DNA synthesis. In 8-oxo-G:A mispairs generated by the incorporation of A opposite unrepaired 8-oxo-G, A is removed by MutYH (MYH) for post-replicative repair, and other oxidized base lesions must be repaired prior to replication in order to prevent mutation fixation. Our earlier studies documented S phase-specific overexpression of endonuclease VIII-like 1 (NEIL1) DNA glycosylase (DG), one of five oxidized base excision repair (BER)-initiating enzymes in mammalian cells, and its high affinity for replication fork-mimicking single-stranded (ss)DNA substrates. We recently provided experimental evidence for the role of NEIL1 in replicating-strand repair, and proposed the “cowcatcher” model of pre-replicative BER, where NEIL1’s nonproductive binding to the lesion base in ssDNA template blocks DNA chain elongation, causing fork regression. Repair of the lesion in the then re-annealed duplex is carried out by NEIL1 in association with the DNA replication proteins. In this commentary, we highlight the critical role of pre-replicative BER in preventing mutagenesis, and discuss the distinction between pre-replicative vs. post-replicative BER

    RT2 PCR array screening reveals distinct perturbations in DNA damage response signaling in FUS-associated motor neuron disease

    No full text
    Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease that has been linked to defective DNA repair. Many familial ALS patients harbor autosomal dominant mutations in the gene encoding the RNA/DNA binding protein 'fused in sarcoma' (FUS) commonly inducing its cytoplasmic mislocalization. Recent reports from our group and others demonstrate a role of FUS in maintaining genome integrity and the DNA damage response (DDR). FUS interacts with many DDR proteins and may regulate their recruitment at damage sites. Given the role of FUS in RNA transactions, here we explore whether FUS also regulates the expression of DDR factors. We performed RT2 PCR arrays for DNA repair and DDR signaling pathways in CRISPR/Cas9 FUS knockout (KO) and shRNA mediated FUS knockdown (KD) cells, which revealed significant (> 2-fold) downregulation of BRCA1, DNA ligase 4, MSH complex and RAD23B. Importantly, similar perturbations in these factors were also consistent in motor neurons differentiated from an ALS patient-derived induced pluripotent stem cell (iPSC) line with a FUS-P525L mutation, as well as in postmortem spinal cord tissue of sporadic ALS patients with FUS pathology. BRCA1 depletion has been linked to neuronal DNA double-strand breaks (DSBs) accumulation and cognitive defects. The ubiquitin receptor RAD23 functions both in nucleotide excision repair and proteasomal protein clearance pathway and is thus linked to neurodegeneration. Together, our study suggests that the FUS pathology perturbs DDR signaling via both its direct role and the effect on the expression of DDR genes. This underscors an intricate connections between FUS, genome instability, and neurodegeneration.status: publishe
    corecore