53 research outputs found

    Afferent arteriolopathy and glomerular collapse but not segmental sclerosis induce tubular atrophy in old spontaneously hypertensive rats

    Get PDF
    In chronic renal disease, the temporal and spatial relationship between vascular, glomerular and tubular changes is still unclear. Hypertension, an important cause of chronic renal failure, leads to afferent arteriolopathy, segmental glomerulosclerosis and tubular atrophy in the juxtamedullary cortex. We investigated the pathological changes of hypertensive renal disease in aged spontaneously hypertensive rats using a large number of serial sections, where we traced and analyzed afferent arteriole, glomerulus and proximal tubule of single nephrons. Our major finding was that both afferent arteriolopathy and glomerular capillary collapse were linked to tubular atrophy. Only nephrons with glomerular collapse (n = 13) showed tubules with reduced diameter indicating atrophy [21.66 ± 2.56 μm vs. tubules in normotensive Wistar Kyoto rats (WKY) 38.56 ± 0.56 μm, p < 0.05], as well as afferent arteriolar wall hypertrophy (diameter 32.74 ± 4.72 μm vs. afferent arterioles in WKY 19.24 ± 0.98 μm, p < 0.05). Nephrons with segmental sclerosis (n = 10) did not show tubular atrophy and tubular diameters were unchanged (35.60 ± 1.43 μm). Afferent arteriolar diameter negatively correlated with glomerular capillary volume fraction (r = −0.36) and proximal tubular diameter (r = −0.46) implying reduced glomerular and tubular flow. In line with this, chronically damaged tubules showed reduced staining for the ciliary protein inversin indicating changed ciliary signalling due to reduced urinary flow. This is the first morphological study on hypertensive renal disease making correlations between vascular, glomerular and tubular components of individual nephron units. Our data suggest that afferent arteriolopathy leads to glomerular collapse and reduced urinary flow with subsequent tubular atrophy

    Immunohistochemical localization and mRNA expression of aquaporins in the macula utriculi of patients with Meniere’s disease and acoustic neuroma

    Get PDF
    Meniere’s disease is nearly invariably associated with endolymphatic hydrops (the net accumulation of water in the inner ear endolymphatic space). Vestibular maculae utriculi were acquired from patients undergoing surgery for Meniere’s disease and acoustic neuroma and from autopsy (subjects with normal hearing and balance). Quantitative immunostaining was conducted with antibodies against aquaporins (AQPs) 1, 4, and 6, Na+K+ATPase, Na+K+2Cl co-transporter (NKCC1), and α-syntrophin. mRNA was extracted from the surgically acquired utricles from subjects with Meniere’s disease and acoustic neuroma to conduct quantitative real-time reverse transcription with polymerase chain reaction for AQP1, AQP4, and AQP6. AQP1 immunoreactivity (−IR) was located in blood vessels and fibrocytes in the underlying stroma, without any apparent alteration in Meniere’s specimens when compared with acoustic neuroma and autopsy specimens. AQP4-IR localized to the epithelial basolateral supporting cells in Meniere’s disease, acoustic neuroma, and autopsy. In specimens from subjects with Meniere’s disease, AQP4-IR was significantly decreased compared with autopsy and acoustic neuroma specimens. AQP6-IR occurred in the sub-apical vestibular supporting cells in acoustic neuroma and autopsy samples. However, in Meniere’s disease specimens, AQP6-IR was significantly increased and diffusely redistributed throughout the supporting cell cytoplasm. Na+K+ATPase, NKCC1, and α-syntrophin were expressed within sensory epithelia and were unaltered in Meniere’s disease specimens. Expression of AQP1, AQP4, or AQP6 mRNA did not differ in vestibular endorgans from patients with Meniere’s disease. Changes in AQP4 (decreased) and AQP6 (increased) expression in Meniere’s disease specimens suggest that the supporting cell might be a cellular target

    Vitamin D deficiency causes inward hypertrophic remodeling and alters vascular reactivity of rat cerebral arterioles

    Get PDF
    BACKGROUND AND PURPOSE: Vitamin D deficiency (VDD) is a global health problem, which can lead to several pathophysiological consequences including cardiovascular diseases. Its impact on the cerebrovascular system is not well understood. The goal of the present work was to examine the effects of VDD on the morphological, biomechanical and functional properties of cerebral arterioles. METHODS: Four-week-old male Wistar rats (n = 11 per group) were either fed with vitamin D deficient diet or received conventional rat chow with per os vitamin D supplementation. Cardiovascular parameters and hormone levels (testosterone, androstenedione, progesterone and 25-hydroxyvitamin D) were measured during the study. After 8 weeks of treatment anterior cerebral artery segments were prepared and their morphological, biomechanical and functional properties were examined using pressure microangiometry. Resorcin-fuchsin and smooth muscle actin staining were used to detect elastic fiber density and smooth muscle cell counts in the vessel wall, respectively. Sections were immunostained for eNOS and COX-2 as well. RESULTS: VDD markedly increased the wall thickness, the wall-to-lumen ratio and the wall cross-sectional area of arterioles as well as the number of smooth muscle cells in the tunica media. As a consequence, tangential wall stress was significantly lower in the VDD group. In addition, VDD increased the myogenic as well as the uridine 5'-triphosphate-induced tone and impaired bradykinin-induced relaxation. Decreased eNOS and increased COX-2 expression were also observed in the endothelium of VDD animals. CONCLUSIONS: VDD causes inward hypertrophic remodeling due to vascular smooth muscle cell proliferation and enhances the vessel tone probably because of increased vasoconstrictor prostanoid levels in young adult rats. In addition, the decreased eNOS expression results in endothelial dysfunction. These morphological and functional alterations can potentially compromise the cerebral circulation and lead to cerebrovascular disorders in VDD

    Formation of tight junctions between neighboring podocytes is an early ultrastructural feature in experimental crescentic glomerulonephritis

    No full text
    Lena Succar,1 Ross A Boadle,2 David C Harris,1,3 Gopala K Rangan1,3 1Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, 2Electron Microscopy Laboratory, Institute of Clinical Pathology and Medical Research, Westmead Hospital, 3Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Sydney, NSW, Australia Purpose: In crescentic glomerulonephritis (CGN), the development of cellular bridges between podocytes and parietal epithelial cells (PECs) triggers glomerular crescent formation. However, the sequential changes in glomerular ultrastructure in CGN are not well defined. This study investigated the time course of glomerular ultrastructure in experimental CGN. Methods: Transmission electron microscopy (TEM) was performed using kidney samples from rats with nephrotoxic serum nephritis (NSN) from day 1 to day 14. Morphometric analysis was conducted on randomly selected glomeruli captured on TEM digital images. Results: On day 1 of NSN, there was widespread formation of focal contacts between the cell bodies of neighboring podocytes, and tight junctions were evident at the site of cell-to-cell contact. This was confirmed by the increased expression of the tight junction molecule, zonula occludens-1 (ZO-1), which localized to the points of podocyte cell&ndash;cell body contact. On day 2, the interpodocyte distance decreased and the glomerular basement membrane thickness increased. Foot process effacement (FPE) was segmental on day 3 and diffuse by day 5, accompanied by the formation of podocyte cellular bridges with Bowman&rsquo;s capsule, as confirmed by a decrease in podocyte-to-PEC distance. Fibrinoid necrosis and cellular crescents were evident in all glomeruli by days 7 and 14. In vitro, the exposure of podocytes to macrophage-conditioned media altered cellular morphology and caused an intracellular redistribution of ZO-1. Conclusion: The formation of tight junctions between podocytes is an early ultrastructural abnormality in CGN, preceding FPE and podocyte bridge formation and occurring in response to inflammatory injury. Podocyte-to-podocyte tight junction formation may be a compensatory mechanism to maintain the integrity of the glomerular filtration barrier following severe endocapillary injury. Keywords: glomerular, crescent, inflammation, zonula occluden

    Incidence and survival of end-stage kidney disease due to polycystic kidney disease in Australia and New Zealand (1963-2014)

    No full text
    © 2017 The Author(s). Background: The aim of this study was to determine whether the incidence and survival of patients with end-stage kidney disease (ESKD) due to polycystic kidney disease (PKD) has changed in Australia and New Zealand. Methods: Data for all PKD patients who developed ESKD and commenced renal replacement therapy (RRT) was assessed using the Australia and New Zealand Dialysis and Transplant Registry from 1963 to 2014. Results: A total 4678 patients with ESKD due to PKD received RRT during the study period. The incidence rate of ESKD (per million population per year) due to PKD rose by 3.2-fold (1970-2010), but the percentage increase between each decade decreased (54.4, 43.8, 25.6 and 6.57%). The median age of onset of new patients developing ESKD has been stable since 1990. Haemodialysis was the most common initial mode of RRT (between 62 and 76% of patients) whereas 24-29% received peritoneal dialysis. The 5-year survival rate of PKD patients on RRT (censored for transplantation and adjusted for age) improved from 26 to 84%, with the percentage increase between each successive time period being 123, 7, 21, 19 and 7.4%. The percentage of deaths on RRT due to cerebrovascular disease declined from 15 to 6%. Conclusions: The incidence and age of onset of ESKD due to PKD has remained unchanged in the modern era though patient survival on RRT has continued to improve. These data suggest that the development and implementation of disease-specific treatments prior to RRT is needed to effectively diminish the incidence of ESKD due to PKD

    Induction monotherapy with sirolimus has selected beneficial effects on glomerular and tubulointersititial injury in nephrotoxic serum nephritis

    No full text
    Lena Succar,1 Julia Lai-Kwon,1 David J Nikolic-Paterson,2 Gopala K Rangan1 1Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead Hospital, Sydney, NSW, Australia; 2Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia Background: The study aimed to test the hypothesis that therapeutic treatment with a mammalian target of rapamycin complex 1 inhibitor reduces renal cell proliferation and attenuates glomerular and tubulointerstitial injury in the early phase of nephrotoxic serum nephritis (NSN) in rats. Methods: Male Wistar-Kyoto rats received a single tail-vein injection of sheep anti-rat glomerular basement membrane serum (day 0) and were treated with vehicle or sirolimus (0.25 mg/kg/day by subcutaneous injection) from day 1 until day 14. Results: Treatment with sirolimus attenuated kidney enlargement by 41% (P&lt;0.05), improved endogenous creatinine clearance by 50% (P&lt;0.05), and reduced glomerular and tubulointerstitial cell proliferation by 53% and 70%, respectively, (P&lt;0.05 compared to vehicle) in rats with NSN. In glomeruli, sirolimus reduced segmental fibrinoid necrosis by 69%, autologous rat immunoglobulin G deposition, glomerular capillary tuft enlargement, and periglomerular myofibroblast (&alpha;-smooth muscle actin-positive cells) accumulation (all P&lt;0.05) but did not significantly affect glomerular crescent formation (P=0.15), macrophage accumulation (P=0.25), or the progression of proteinuria. In contrast, sirolimus preserved tubulointerstitial structure and attenuated all markers of injury (interstitial ED-1- and &alpha;-smooth muscle actin-positive cells and tubular vimentin expression; all P&lt;0.05). By immunohistochemistry and Western blot analysis, sirolimus reduced the glomerular and tubulointerstitial expression of phosphorylated (Ser 235/236) S6-ribosomal protein (P&lt;0.05). Conclusion: Induction monotherapy with sirolimus suppressed target of rapamycin complex 1 activation, renal cell proliferation, and injury during the early stages of rodent NSN, but the degree of histological protection was more consistent in the tubulointerstitium than the glomerular compartment. Keywords: glomerulonephritis, proliferation, crescentic, rapamycin, inflammation, kidne
    • …
    corecore