4 research outputs found

    Investigation of the reliability of semi-automatic annotation by the Geri time-lapse system

    No full text
    International audienceResearch question: What is the reliability of Geri® Assess 2.0 software time-lapse technology for annotating kinetic events and identifying abnormal phenotypes in preimplantation human embryos? Design: Embryos were annotated using Assess 2.0 for the appearance and fading of pronuclei, and for progression to the 2-, 3-, 4-, 5- and 6-cell stages and to three blastocyst stages. Identification of reverse cleavage and direct cleavage phenotypes was also recorded. Manual annotation was undertaken after these events in a blinded fashion. Embryo scores were compared between Assess 2.0 and manual annotation. Results: A total of 513 oocytes from 34 women were included. Detection rates for Assess 2.0 versus manual annotation among the 10 kinetic events and including direct cleavage and reverse cleavage ranged between 0% and 94.4%. The percentage of discordant pairs was significantly different for all 12 events analysed (P-value range 0.036 to <0.0001). The sensitivity of Assess 2.0 ranged from 68.2% to 94.4% and specificity ranged from 63.8% to 97.3%. Assess 2.0 called for verification by the embryologist for at least one event in 55.2% of oocytes assessed. Of the 297 embryos scored by manual annotation, Assess 2.0 assigned the same score for only 125 (42.1%), although after manual corrections, concordance with manual annotation scores was raised to 66.0%. Conclusions: The results reveal striking differences between Assess 2.0 and manual annotation for kinetic annotations. Failure of Assess 2.0 to detect direct cleavage events and the low detection rate of reverse cleavage are further limitations. These collective findings highlight the importance of validating time-lapse annotation software before clinical implementation. Manual verification of Assess 2.0 outputs remains essential for accurate data interpretation

    Unexpected Interacting Effects of Physical (Radiation) and Chemical (Bisphenol A) Treatments on Male Reproductive Functions in Mice

    No full text
    International audienceFor decades, numerous chemical pollutants have been described to interfere with endogenous hormone metabolism/signaling altering reproductive functions. Among these endocrine disrupting substances, Bisphenol A (BPA), a widely used compound, is known to negatively impact germ and somatic cells in the testis. Physical agents, such as ionizing radiation, were also described to perturb spermatogenesis. Despite the fact that we are constantly exposed to numerous environmental chemical and physical compounds, very few studies explore the impact of combined exposure to chemical and physical pollutants on reproductive health. The aim of this study was to describe the impact of fetal co-exposure to BPA and IR on testicular function in mice. We exposed pregnant mice to 10 µM BPA (corresponding to 0.5 mg/kg/day) in drinking water from 10.5 dpc until birth, and we irradiated mice with 0.2 Gy (γ-ray, RAD) at 12.5 days post-conception. Co-exposure to BPA and γ-ray induces DNA damage in fetal germ cells in an additive manner, leading to a long-lasting decrease in germ cell abundance. We also observed significant alteration of adult steroidogenesis by RAD exposure independently of the BPA exposure. This is illustrated by the downregulation of steroidogenic genes and the decrease of the number of adult Leydig cells. As a consequence, courtship behavior is modified, and male ultrasonic vocalizations associated with courtship decreased. In conclusion, this study provides evidence for the importance of broadening the concept of endocrine disruptors to include physical agents, leading to a reevaluation of risk management and regulatory decisions

    A Science Platform Network to Facilitate Astrophysics in the 2020s

    No full text
    International audienceWe advocate for the adequate funding of data centers to develop and operate “science platforms”, which will provide storage and computing resources for the astronomical community to run analyses near the data. Furthermore, these platforms should be connected to enable cross-center analysis and processing
    corecore