4 research outputs found

    Moringa oleifera Seeds Attenuate Vascular Oxidative and Nitrosative Stresses in Spontaneously Hypertensive Rats

    Get PDF
    International audienceMoringa oleifera (MOI) is a tree currently used in traditional medicine in tropical Africa, America, and Asia for therapeutic applications in several disorders including arterial hypertension. We previously described a cardiac protective role of a treatment with MOI seeds in spontaneously hypertensive rats (SHR). Here, we investigated the effects of this treatment on oxidative and nitrosative vascular stresses in SHR, with normotensive Wistar Kyoto rats used as controls. Oxidative and nitrosative stresses detected in SHR aortas using the fluorescent dye dihydroethidine and protein nitrotyrosine staining were reduced in MOI-treated SHR aortas. This was associated with a decrease of free 8-isoprostane circulating level, vascular p22(phox) and p47(phox) expressions, and SOD2 upregulation. Moreover, circulating nitrites and C-reactive protein, increased in SHR, were both reduced in SHR receiving MOI. This was associated to decrease iNOS and NF-ÎşB protein expressions after MOI treatment. In functional studies, the endothelium-dependent carbachol-induced relaxation was improved in MOI-treated SHR resistance arteries. Oral administration of MOI seeds demonstrates vascular antioxidant, anti-inflammatory, and endothelial protective effects in SHR. Our data support the use of MOI seeds in diet against cardiovascular disorders associated with oxidative stress and inflammation such as hypertension, scientifically validating the use of these seeds in Malagasy traditional medicine

    Moringa oleifera Seeds Improve Aging-Related Endothelial Dysfunction in Wistar Rats

    No full text
    Vascular aging is characterized by functional and structural changes of the vessel wall, including endothelial dysfunction, with decreased endothelial NO⋅ bioavailability and elevated vasoconstrictor and inflammatory mediator production, vascular rigidity, and tone impairment. Moringa oleifera (MOI) is a little tree, and different parts of which are used in traditional medicine in tropical Africa, America, and Asia for therapeutic applications in several disorders including cardiovascular disease. The present study is aimed at assessing the effect of MOI on aging-associated alteration of the endothelial function in Wistar rats. Middle-aged Wistar rats (46-week-old males) have been fed with food containing or not 750 mg/kg/day of MOI seed powder for 4 weeks. A group of young Wistar rats (16-week-old) was used as control. Measurement of isometric contraction, western blot analysis, and immunostaining has then been performed in the aortas and mesenteric arteries to assess the endothelium function. MOI treatment improved carbachol-induced relaxation in both aortas and mesenteric arteries of middle-aged rats. In the aortas, this was associated with an increased Akt signalling and endothelial NO synthase activation and a downregulation of arginase-1. In the mesenteric arteries, the improvement of the endothelial-dependent relaxation was related to an EDHF-dependent mechanism. These results suggest a vascular protective effect of MOI seeds against the vascular dysfunction that develops during aging through different mechanisms in conductance and resistance arteries

    SIRT1 Signaling Is Involved in the Vascular Improvement Induced by Moringa Oleifera Seeds during Aging

    Get PDF
    Vascular aging is linked to reduce NO bioavailability, endothelial dysfunction, oxidative stress, and inflammation. We previously showed that a 4-week treatment of middle-aged Wistar rats (MAWRs, 46 weeks old) with Moringa oleifera seed powder (MOI, 750 mg/kg/day) improved vascular function. Here, we investigated the involvement of SIRT1 in MOI-induced vascular improvement. MAWRs were treated with a standard or MOI-containing diet. Young rats (YWR, 16 weeks old) were the controls and received a standard diet. The hearts and aortas were harvested to evaluate SIRT1 and FOXO1 expression via Western blot and/or immunostaining, SIRT1 activity via a fluorometric assay, and oxidative stress using the DHE fluorescent probe. In the hearts and aortas, SIRT1 expression, reduced in MAWRs compared to YWRs, was enhanced in MOI MAWRs. In the hearts, SIRT1 activity did not differ between YWRs and MAWRs, whereas it was increased in MOI MAWRs compared with them. In the aortas, SIRT1 activity decreased in MAWRs, and it was similar in the MOI MAWRs and YWRs. FOXO1 expression increased in the nuclei of MAWR aortas compared to YWR and was reversed in MOI MAWRs. Interestingly, MOI treatment normalized oxidative stress enhanced in MAWRs, in both the heart and aorta. These results demonstrate the protective role of MOI against cardiovascular dysfunction due to aging via enhanced SIRT1 function and subsequently reduced oxidative stress
    corecore