76 research outputs found

    Changes in plant communities of low-salinity tidal marshes in response to sea-level riselow-salinity tidal marshes in response to sea-level rise

    Get PDF
    As sea-level rises, low-salinity tidal marshes experience greater flooding with more saline water. In the Chesapeake Bay estuary, we compared the 1980 and 2014 tidal marsh inventories (TMIs) of plant communities from James City County, Virginia, USA, with respect to the spatial distribution of two species—the invasive reed Phragmites australis and native salt marsh grass Spartina alterniflora–plus overall species richness. Since the 1980 TMI, the total area of low-salinity tidal marshes in which P. australis occurred increased from 0.46 km2 to 6.30 km2 in 2014. Between TMIs, however, the total area of low-salinity marshes occupied by S. alterniflora increased by only 0.02 km2. Species richness in low-salinity tidal marshes decreased from 41 to 25 between TMIs. To assess seedling emergence under increased flooding and salinity, we completed two seed bank germination experiments using soil samples collected from six low-salinity marshes containing established P. australis stands. In the first experiment, more seedlings emerged in the two low-salinity (0 vs. 5 ppt) treatments after seven weeks, irrespective of flooding (water 3.75 cm below vs. at soil surface), but no P. australis or S. alterniflora germinated. For the second experiment, we added seeds of P. australis and S. alterniflora to soils exposed to the same flooding and salinity treatments to test the impact of these plant competitors on seedling emergence. No difference in number of seedlings was detected among treatments, but the number of species and their relative abundance was significantly affected by flooding (ANOSIM, R = 0.138, P \u3c 0.001). The presence of P. australis and S. alterniflora seedlings appeared to shift the physical factor more influential on seedling emergence from salinity to flooding. For both seed bank experiments, more seedlings but not more species emerged from soils collected from marshes where P. australis coverage was P. australis and S. alterniflora—a trend expected to continue here and in other riverine estuaries of the Atlantic and Gulf Coasts

    Mucous contribution to gut nutrient content in American gizzard shad Dorosoma cepedianum

    Get PDF
    This study developed and applied an approach to calculate the proportion of fish gut content composed of mucus secreted by the oropharyngeal cavity and gut. The amount of nitrogen in the contents of the foregut (oesophagus and gizzard) and the epibranchial organs of suspension‐feeding American gizzard shad Dorosoma cepedianum was significantly higher than the nitrogen in the homogeneous food source. Using data collected from suspension‐feeding experiments and the nitrogen content of D. cepedianum mucus, a series of equations illustrated that mucus constituted c. 10% of D. cepedianum foregut content and 12% of epibranchial organ content by dry mass. Future quantification of fish feeding selectivity and absorption efficiency can use this approach to take into account the contribution of fish mucus to the nutrients in the gut contents. This study supports the conclusion that suspension‐feeding D. cepedianum in a heterogeneous environment selectively ingest nutrient‐rich particles, even when gut nutrient content is adjusted to take into account the contribution of mucus

    Biogeochemical effects of iron availability on primary producers in a shallow marine carbonate environment

    Get PDF
    We completed a synoptic survey of iron, phosphorus, and sulfur concentrations in shallow marine carbonate sediments from south Florida. Total extracted iron concentrations typically were 50 ÎŒmol g-1 dry weight (DW) and tended to decrease away from the Florida mainland, whereas total extracted phosphorus concentrations mostly were 10 ÎŒmol g-1 DW and tended to decrease from west to east across Florida Bay. Concentrations of reduced sulfur compounds, up to 40 ÎŒmol g-1 DW, tended to covary with sediment iron concentrations, suggesting that sulfide mineral formation was iron-limited. An index of iron availability derived from sediment data was negatively correlated with chlorophyll a concentrations in surface waters, demonstrating the close coupling of sediment-water column processes. Eight months after applying a surface layer of iron oxide granules to experimental plots, sediment iron, phosphorus, and sulfur were elevated to a depth of 10 cm relative to control plots. Biomass of the seagrass Thalassia testudinum was not different between control and iron addition plots, but individual shoot growth rates were significantly higher in experimental plots after 8 months. Although the iron content of leaf tissues was significantly higher from iron addition plots, no difference in phosphorus content of T. testudinum leaves was observed. Iron addition altered plant exposure to free sulfide, documented by a significantly higher ÎŽ34S of leaf tissue from experimental plots relative to controls. Iron as a buffer to toxic sulfides may promote individual shoot growth, but phosphorus availability to plants still appears to limit production in carbonate sediments

    Ribbed mussel Geukensia demissa population response to living shoreline design and ecosystem development

    Get PDF
    Coastal communities increasingly invest in natural and nature-based features (e.g., living shorelines) as a strategy to protect shorelines and enhance coastal resilience. Tidal marshes are a common component of these strategies because of their capacity to reduce wave energy and storm surge impacts. Performance metrics of restoration success for living shorelines tend to focus on how the physical structure of the created marsh enhances shoreline protection via proper elevation and marsh plant presence. These metrics do not fully evaluate the level of marsh ecosystem development. In particular, the presence of key marsh bivalve species can indicate the capability of the marsh to provide non-protective services of value, such as water quality improvement and habitat provision. We observed an unexpected low to no abundance of the filter-feeding ribbed mussel, Geukensia demissa, in living shoreline marshes throughout Chesapeake Bay. In salt marsh ecosystems along the Atlantic Coast of the United States, ribbed mussels improve water quality, enhance nutrient removal, stabilize the marsh, and facilitate long-term sustainability of the habitat. Through comparative field surveys and experiments within a chronosequence of 13 living shorelines spanning 2–16 years since construction, we examined three factors we hypothesized may influence recruitment of ribbed mussels to living shoreline marshes: (1) larval access to suitable marsh habitat, (2) sediment quality of low marsh (i.e., potential mussel habitat), and (3) availability of high-quality refuge habitat. Our findings suggest that at most sites larval mussels are able to access and settle on living shoreline created marshes behind rock sill structures, but that most recruits are likely not surviving. Sediment organic matter (OM) and plant density were correlated with mussel abundance, and sediment OM increased with marsh age, suggesting that living shoreline design (e.g., sand fill, planting grids) and lags in ecosystem development (sediment properties) are reducing the survival of the young recruits. We offer potential modifications to living shoreline design and implementation practices that may facilitate self-sustaining ribbed mussel populations in these restored habitats

    Stormwater runoff drives viral changes in inland freshwaters community composition

    Get PDF
    Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities

    Living shorelines achieve functional equivalence to natural fringe marshes across multiple ecological metrics

    Get PDF
    Nature-based shoreline protection provides a welcome class of adaptations to promote ecological resilience in the face of climate change. Along coastlines, living shorelines are among the preferred adaptation strategies to both reduce erosion and provide ecological functions. As an alternative to shoreline armoring, living shorelines are viewed favorably among coastal managers and some private property owners, but they have yet to undergo a thorough examination of how their levels of ecosystem functions compare to their closest natural counterpart: fringing marshes. Here, we provide a synthesis of results from a multi-year, large-spatial-scale study in which we compared numerous ecological metrics (including habitat provision for fish, invertebrates, diamondback terrapin, and birds, nutrient and carbon storage, and plant productivity) measured in thirteen pairs of living shorelines and natural fringing marshes throughout coastal Virginia, USA. Living shorelines were composed of marshes created by bank grading, placement of sand fill for proper elevations, and planting of S. alterniflora and S. patens, as well as placement of a stone sill seaward and parallel to the marsh to serve as a wave break. Overall, we found that living shorelines were functionally equivalent to natural marshes in nearly all measured aspects, except for a lag in soil composition due to construction of living shoreline marshes with clean, low-organic sands. These data support the prioritization of living shorelines as a coastal adaptation strategy

    Social factors affecting seasonal variation in bovine trypanosomiasis on the Jos Plateau, Nigeria

    Get PDF
    BACKGROUND: African Animal Trypanosomiasis (AAT) is a widespread disease of livestock in Nigeria and presents a major constraint to rural economic development. The Jos Plateau was considered free from tsetse flies and the trypanosomes they transmit due to its high altitude and this trypanosomiasis free status attracted large numbers of cattle-keeping pastoralists to the area. The Jos Plateau now plays a major role in the national cattle industry in Nigeria, accommodating approximately 7% of the national herd, supporting 300,000 pastoralists and over one million cattle. During the past two decades tsetse flies have invaded the Jos Plateau and animal trypanosomiasis has become a significant problem for livestock keepers. Here we investigate the epidemiology of trypanosomiasis as a re-emerging disease on the Plateau, examining the social factors that influence prevalence and seasonal variation of bovine trypanosomiasis. METHODS: In 2008 a longitudinal two-stage cluster survey was undertaken on the Jos Plateau. Cattle were sampled in the dry, early wet and late wet seasons. Parasite identification was undertaken using species-specific polymerase chain reactions to determine the prevalence and distribution of bovine trypanosomiasis. Participatory rural appraisal was also conducted to determine knowledge, attitudes and practices concerning animal husbandry and disease control. RESULTS: Significant seasonal variation between the dry season and late wet season was recorded across the Jos Plateau, consistent with expected variation in tsetse populations. However, marked seasonal variations were also observed at village level to create 3 distinct groups: Group 1 in which 50% of villages followed the general pattern of low prevalence in the dry season and high prevalence in the wet season; Group 2 in which 16.7% of villages showed no seasonal variation and Group 3 in which 33.3% of villages showed greater disease prevalence in the dry season than in the wet season. CONCLUSIONS: There was high seasonal variation at the village level determined by management as well as climatic factors. The growing influence of management factors on the epidemiology of trypanosomiasis highlights the impact of recent changes in land use and natural resource competition on animal husbandry decisions in the extensive pastoral production system

    First Dating of a Recombination Event in Mammalian Tick-Borne Flaviviruses

    Get PDF
    The mammalian tick-borne flavivirus group (MTBFG) contains viruses associated with important human and animal diseases such as encephalitis and hemorrhagic fever. In contrast to mosquito-borne flaviviruses where recombination events are frequent, the evolutionary dynamic within the MTBFG was believed to be essentially clonal. This assumption was challenged with the recent report of several homologous recombinations within the Tick-borne encephalitis virus (TBEV). We performed a thorough analysis of publicly available genomes in this group and found no compelling evidence for the previously identified recombinations. However, our results show for the first time that demonstrable recombination (i.e., with large statistical support and strong phylogenetic evidences) has occurred in the MTBFG, more specifically within the Louping ill virus lineage. Putative parents, recombinant strains and breakpoints were further tested for statistical significance using phylogenetic methods. We investigated the time of divergence between the recombinant and parental strains in a Bayesian framework. The recombination was estimated to have occurred during a window of 282 to 76 years before the present. By unravelling the temporal setting of the event, we adduce hypotheses about the ecological conditions that could account for the observed recombination
    • 

    corecore