402 research outputs found
Doping a correlated band insulator: A new route to half metallic behaviour
We demonstrate in a simple model the surprising result that turning on an
on-site Coulomb interaction U in a doped band insulator leads to the formation
of a half-metallic state. In the undoped system, we show that increasing U
leads to a first order transition between a paramagnetic, band insulator and an
antiferomagnetic Mott insulator at a finite value U_{AF}. Upon doping, the
system exhibits half metallic ferrimagnetism over a wide range of doping and
interaction strengths on either side of U_{AF}. Our results, based on dynamical
mean field theory, suggest a novel route to half-metallic behavior and provide
motivation for experiments on new materials for spintronics.Comment: 5 pages, 7 figure
Can correlations drive a band insulator metallic?
We analyze the effects of the on-site Coulomb repulsion U on a band insulator
using dynamical mean field theory (DMFT). We find the surprising result that
the gap is suppressed to zero at a critical Uc1 and remains zero within a
metallic phase. At a larger Uc2 there is a second transition from the metal to
a Mott insulator, in which the gap increases with increasing U. These results
are qualitatively different from Hartree-Fock theory which gives a
monotonically decreasing but non-zero insulating gap for all finite U.Comment: 4 pages, 5 figure
High Tc Superconductors -- A Variational Theory of the Superconducting State
We use a variational approach to gain insight into the strongly correlated
d-wave superconducting state of the high Tc cuprates at T=0. We show that
strong correlations lead to qualitatively different trends in pairing and phase
coherence: the pairing scale decreases monotonically with hole doping while the
SC order parameter shows a non-monotonic dome. We obtain detailed results for
the doping-dependence of a large number of experimentally observable
quantities, including the chemical potential, coherence length, momentum
distribution, nodal quasiparticle weight and dispersion, incoherent features in
photoemission spectra, optical spectral weight and superfluid density. Most of
our results are in remarkable quantitative agreement with existing data and
some of our predictions, first reported in Phys. Rev. Lett. {\bf 87}, 217002
(2001), have been recently verified.Comment: (Minor revisions, 1 figure added, version to appear in PRB) 23 RevTeX
pages, 11 eps figs, long version of cond-mat/0101121, contains detailed
comparisons with experiments, analytical insights, technical aspects of the
calculation, and comparison with slave boson MF
Ground State Properties of Fermi Gases in the Strongly Interacting Regime
The ground state energies and pairing gaps in dilute superfluid Fermi gases
have now been calculated with the quantum Monte Carlo method without detailed
knowledge of their wave functions. However, such knowledge is essential to
predict other properties of these gases such as density matrices and pair
distribution functions. We present a new and simple method to optimize the wave
functions of quantum fluids using Green's function Monte Carlo method. It is
used to calculate the pair distribution functions and potential energies of
Fermi gases over the entire regime from atomic Bardeen-Cooper-Schrieffer
superfluid to molecular Bose-Einstein condensation, spanned as the interaction
strength is varied.Comment: 4 pages, 4 figure
From Cooper Pairs to Composite Bosons: A Generalized RPA Analysis of Collective Excitations
The evolution of the ground state and the excitation spectrum of the two and
three dimensional attractive Hubbard model is studied as the system evolves
from a Cooper pair regime for weak attraction to a composite boson regime for a
strong attraction.Comment: 20 pages RevTex, 7 figures on reques
Photoelectron Escape Depth and Inelastic Secondaries in High Temperature Superconductors
We calculate the photoelectron escape depth in the high temperature
superconductor Bi2212 by use of electron energy-loss spectroscopy data. We find
that the escape depth is only 3 Ang. for photon energies typically used in
angle resolved photoemission measurements. We then use this to estimate the
number of inelastic secondaries, and find this to be quite small near the Fermi
energy. This implies that the large background seen near the Fermi energy in
photoemission measurements is of some other origin.Comment: 2 pages, revtex, 3 encapsulated postscript figure
Topological quantum phase transition in the BEC-BCS crossover phenomena
A crossover between the Bose Einstein condensation (BEC) and BCS
superconducting state is described topologically in the chiral symmetric
fermion system with attractive interaction. Using a local Z_2 Berry phase, we
found a quantum phase transition between the BEC and BCS phases without
accompanying the bulk gap closing.Comment: 4 pages, 5 figure
Deviations from Fermi-liquid behavior above in 2D short coherence length superconductors
We show that there are qualitative differences between the temperature
dependence of the spin and charge correlations in the normal state of the 2D
attractive Hubbard model using quantum Monte Carlo simulations. The
one-particle density of states shows a pseudogap above \tc with a depleted
with decreasing . The susceptibility \cs and the low frequency spin
spectral weight track , which explains the spin-gap scaling: 1/T_1T \sim
\cs(T). However the charge channel is dominated by collective behavior and the
compressibility is -independent. This anomalous ``spin-charge
separation'' is shown to exist even at intermediate where the momentum
distribution n(\bk) gives evidence for degenerate Fermi system.Comment: 4 pages (twocolumn format), 5 Postscript figure
One particle in a box: the simplest model for a Fermigas in the unitary limit
We consider a single quantum particle in a spherical box interacting with a
fixed scatterer at the center, to construct a model of a degenerate atomic
Fermi gas close to a Feshbach resonance. One of the key predictions of the
model is the existence of two branches for the macroscopic state of the gas, as
a function of the magnetic field controlling the value of the scattering
length.This model is able to draw a qualitative picture of all the different
features recently observed in a degenerate atomic Fermi gas close to the
resonance, even in the unitary limit
- …