402 research outputs found

    Doping a correlated band insulator: A new route to half metallic behaviour

    Full text link
    We demonstrate in a simple model the surprising result that turning on an on-site Coulomb interaction U in a doped band insulator leads to the formation of a half-metallic state. In the undoped system, we show that increasing U leads to a first order transition between a paramagnetic, band insulator and an antiferomagnetic Mott insulator at a finite value U_{AF}. Upon doping, the system exhibits half metallic ferrimagnetism over a wide range of doping and interaction strengths on either side of U_{AF}. Our results, based on dynamical mean field theory, suggest a novel route to half-metallic behavior and provide motivation for experiments on new materials for spintronics.Comment: 5 pages, 7 figure

    Can correlations drive a band insulator metallic?

    Get PDF
    We analyze the effects of the on-site Coulomb repulsion U on a band insulator using dynamical mean field theory (DMFT). We find the surprising result that the gap is suppressed to zero at a critical Uc1 and remains zero within a metallic phase. At a larger Uc2 there is a second transition from the metal to a Mott insulator, in which the gap increases with increasing U. These results are qualitatively different from Hartree-Fock theory which gives a monotonically decreasing but non-zero insulating gap for all finite U.Comment: 4 pages, 5 figure

    High Tc Superconductors -- A Variational Theory of the Superconducting State

    Full text link
    We use a variational approach to gain insight into the strongly correlated d-wave superconducting state of the high Tc cuprates at T=0. We show that strong correlations lead to qualitatively different trends in pairing and phase coherence: the pairing scale decreases monotonically with hole doping while the SC order parameter shows a non-monotonic dome. We obtain detailed results for the doping-dependence of a large number of experimentally observable quantities, including the chemical potential, coherence length, momentum distribution, nodal quasiparticle weight and dispersion, incoherent features in photoemission spectra, optical spectral weight and superfluid density. Most of our results are in remarkable quantitative agreement with existing data and some of our predictions, first reported in Phys. Rev. Lett. {\bf 87}, 217002 (2001), have been recently verified.Comment: (Minor revisions, 1 figure added, version to appear in PRB) 23 RevTeX pages, 11 eps figs, long version of cond-mat/0101121, contains detailed comparisons with experiments, analytical insights, technical aspects of the calculation, and comparison with slave boson MF

    Ground State Properties of Fermi Gases in the Strongly Interacting Regime

    Full text link
    The ground state energies and pairing gaps in dilute superfluid Fermi gases have now been calculated with the quantum Monte Carlo method without detailed knowledge of their wave functions. However, such knowledge is essential to predict other properties of these gases such as density matrices and pair distribution functions. We present a new and simple method to optimize the wave functions of quantum fluids using Green's function Monte Carlo method. It is used to calculate the pair distribution functions and potential energies of Fermi gases over the entire regime from atomic Bardeen-Cooper-Schrieffer superfluid to molecular Bose-Einstein condensation, spanned as the interaction strength is varied.Comment: 4 pages, 4 figure

    From Cooper Pairs to Composite Bosons: A Generalized RPA Analysis of Collective Excitations

    Full text link
    The evolution of the ground state and the excitation spectrum of the two and three dimensional attractive Hubbard model is studied as the system evolves from a Cooper pair regime for weak attraction to a composite boson regime for a strong attraction.Comment: 20 pages RevTex, 7 figures on reques

    Photoelectron Escape Depth and Inelastic Secondaries in High Temperature Superconductors

    Full text link
    We calculate the photoelectron escape depth in the high temperature superconductor Bi2212 by use of electron energy-loss spectroscopy data. We find that the escape depth is only 3 Ang. for photon energies typically used in angle resolved photoemission measurements. We then use this to estimate the number of inelastic secondaries, and find this to be quite small near the Fermi energy. This implies that the large background seen near the Fermi energy in photoemission measurements is of some other origin.Comment: 2 pages, revtex, 3 encapsulated postscript figure

    Topological quantum phase transition in the BEC-BCS crossover phenomena

    Get PDF
    A crossover between the Bose Einstein condensation (BEC) and BCS superconducting state is described topologically in the chiral symmetric fermion system with attractive interaction. Using a local Z_2 Berry phase, we found a quantum phase transition between the BEC and BCS phases without accompanying the bulk gap closing.Comment: 4 pages, 5 figure

    Deviations from Fermi-liquid behavior above TcT_c in 2D short coherence length superconductors

    Full text link
    We show that there are qualitative differences between the temperature dependence of the spin and charge correlations in the normal state of the 2D attractive Hubbard model using quantum Monte Carlo simulations. The one-particle density of states shows a pseudogap above \tc with a depleted N(0)N(0) with decreasing TT. The susceptibility \cs and the low frequency spin spectral weight track N(0)N(0), which explains the spin-gap scaling: 1/T_1T \sim \cs(T). However the charge channel is dominated by collective behavior and the compressibility dn/dμdn/d\mu is TT-independent. This anomalous ``spin-charge separation'' is shown to exist even at intermediate U|U| where the momentum distribution n(\bk) gives evidence for degenerate Fermi system.Comment: 4 pages (twocolumn format), 5 Postscript figure

    One particle in a box: the simplest model for a Fermigas in the unitary limit

    Full text link
    We consider a single quantum particle in a spherical box interacting with a fixed scatterer at the center, to construct a model of a degenerate atomic Fermi gas close to a Feshbach resonance. One of the key predictions of the model is the existence of two branches for the macroscopic state of the gas, as a function of the magnetic field controlling the value of the scattering length.This model is able to draw a qualitative picture of all the different features recently observed in a degenerate atomic Fermi gas close to the resonance, even in the unitary limit
    corecore