30 research outputs found

    A Suborbital Payload for Soft X-ray Spectroscopy of Extended Sources

    Full text link
    We present a suborbital rocket payload capable of performing soft X-ray spectroscopy on extended sources. The payload can reach resolutions of ~100(lambda/dlambda) over sources as large as 3.25 degrees in diameter in the 17-107 angstrom bandpass. This permits analysis of the overall energy balance of nearby supernova remnants and the detailed nature of the diffuse soft X-ray background. The main components of the instrument are: wire grid collimators, off-plane grating arrays and gaseous electron multiplier detectors. This payload is adaptable to longer duration orbital rockets given its comparatively simple pointing and telemetry requirements and an abundance of potential science targets.Comment: Accepted to Experimental Astronomy, 12 pages plus 1 table and 17 figure

    The use of EM-CCDs on high resolution soft x-ray spectrometers

    Get PDF
    Charge-Coupled Devices (CCDs) have been traditionally used on high resolution soft X-ray spectrometers, but with their ability to increase the signal level in the detector before the readout noise of the system is added, Electron-Multiplying CCDs (EM-CCDs) have the potential to offer many advantages in soft X-ray detection. Through this signal multiplication an EM-CCD has advantages over conventioanl CCDs of increased signal, suppressed noise, faster readout speeds for the same equivalent readout noise and an increased inmmunity to Electro-Magnetic Intereference. This paper will look at present and future spacel applications for high resolution soft X-ray spectrometers and assess the advantages and disadvantage of using EM-CCDs in these applications

    Performance Testing of a Novel Off-plane Reflection Grating and Silicon Pore Optic Spectrograph at PANTER

    Full text link
    An X-ray spectrograph consisting of radially ruled off-plane reflection gratings and silicon pore optics was tested at the Max Planck Institute for extraterrestrial Physics PANTER X-ray test facility. The silicon pore optic (SPO) stack used is a test module for the Arcus small explorer mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with a SPO to produce an overlapped spectrum. The gratings were aligned using an active alignment module which allows for the independent manipulation of subsequent gratings to a reference grating in three degrees of freedom using picomotor actuators which are controllable external to the test chamber. We report the line spread functions of the spectrograph and the actively aligned gratings, and plans for future development.Comment: Draft Version March 19, 201

    A study of electron-multiplying CCDs for use on the International X-ray Observatory off-plane x-ray grating spectrometer

    Get PDF
    CCDs are regularly used as imaging and spectroscopic devices on space telescopes at X-ray energies due to their high quantum efficiency and linearity across the energy range. The International X-ray Observatory's X-ray Grating Spectrometer will also look to make use of these devices across the energy band of 0.3 keV to 1 keV. At these energies, when photon counting, the charge generated in the silicon is close to the noise of the system. In order to be able to detect these low energy X-ray events, the system noise of the detector has to be minimised to have a sufficient signal-to-noise-ratio. By using an EM-CCD instead of a conventional CCD, any charge that is collected in the device can be multiplied before it is read out and as long as the EM-CCD is cool enough to adequately suppress the dark current, the signal-to-noise ratio of the device can be significantly increased, allowing soft X-ray events to be more easily detected. This paper will look into the use of EM-CCDs for the detection of low energy X-rays, in particular the effect that using these devices will have on the signal to noise ratio as well as any degradation in resolution and FWHM that may occur due to the additional shot noise on the signal caused by the charge packet amplification process
    corecore