139 research outputs found
Bulk Gauge Fields in Warped Space and Localized Supersymmetry Breaking
We consider five dimensional supersymmetric warped scenarios in which the
Standard Model quark and lepton fields are localized on the ultraviolet brane,
while the Standard Model gauge fields propagate in the bulk. Supersymmetry is
assumed to be broken on the infrared brane. The relative sizes of supersymmetry
breaking effects are found to depend on the hierarchy between the infrared
scale and the weak scale. If the infrared scale is much larger than the weak
scale the leading supersymmetry breaking effect on the visible brane is given
by gaugino mediation. The gaugino masses at the weak scale are proportional to
the square of the corresponding gauge coupling, while the dominant contribution
to the scalar masses arises from logarithmically enhanced radiative effects
involving the gaugino mass that are cutoff at the infrared scale. While the LSP
is the gravitino, the NLSP which is the stau is stable on collider time scales.
If however the infrared scale is close to the weak scale then the effects of
hard supersymmetry breaking operators on the scalar masses can become
comparable to those from gaugino mediation. These operators alter the relative
strengths of the couplings of gauge bosons and gauginos to matter, and give
loop contributions to the scalar masses that are also cutoff at the infrared
scale. The gaugino masses, while exhibiting a more complicated dependence on
the corresponding gauge coupling, remain hierarchical and become proportional
to the corresponding gauge coupling in the limit of strong supersymmetry
breaking. The scalar masses are finite and a loop factor smaller than the
gaugino masses. The LSP remains the gravitino.Comment: 36 pages, 2 figure
RS1, Custodial Isospin and Precision Tests
We study precision electroweak constraints within a RS1 model with gauge
fields and fermions in the bulk. The electroweak gauge symmetry is enhanced to
SU(2)_L \times SU(2)_R \times U(1)_{B-L}, thereby providing a custodial isospin
symmetry sufficient to suppress excessive contributions to the T parameter. We
then construct complete models, complying with all electroweak constraints, for
solving the hierarchy problem, without supersymmetry or large hierarchies in
the fundamental couplings. Using the AdS/CFT correspondence our models can be
interpreted as dual to a strongly coupled conformal Higgs sector with global
custodial symmetry, gauge and fermionic matter being fundamental fields
external to the CFT. This scenario has interesting collider signals, distinct
from other RS models in the literature.Comment: 32 pages, 6 figures, latex2e, minor changes, references adde
Matter wave functions and Yukawa couplings in F-theory Grand Unification
We study the local structure of zero mode wave functions of chiral matter
fields in F-theory unification. We solve the differential equations for the
zero modes derived from local Higgsing in the 8-dimensional parent action of
F-theory 7-branes. The solutions are found as expansions both in powers and
derivatives of the magnetic fluxes. Yukawa couplings are given by an overlap
integral of the three wave functions involved in the interaction and can be
calculated analytically. We provide explicit expressions for these Yukawas to
second order both in the flux and derivative expansions and discuss the effect
of higher order terms. We explicitly describe the dependence of the couplings
on the U(1) charges of the relevant fields, appropriately taking into account
their normalization. A hierarchical Yukawa structure is naturally obtained. The
application of our results to the understanding of the observed hierarchies of
quarks and leptons is discussed.Comment: Latex, 51 pages, 4 figures, typos corrected, note adde
Moduli Stabilization from Fluxes in a Simple IIB Orientifold
We study novel type IIB compactifications on the T^6/Z_2 orientifold. This
geometry arises in the T-dual description of Type I theory on T^6, and one
normally introduces 16 space-filling D3-branes to cancel the RR tadpoles. Here,
we cancel the RR tadpoles either partially or fully by turning on three-form
flux in the compact geometry. The resulting (super)potential for moduli is
calculable. We demonstrate that one can find many examples of N=1
supersymmetric vacua with greatly reduced numbers of moduli in this system. A
few examples with N>1 supersymmetry or complete supersymmetry breaking are also
discussed.Comment: 49 pages, harvmac big; v2, corrected some typo
Inflation in Realistic D-Brane Models
We find successful models of D-brane/anti-brane inflation within a string
context. We work within the GKP-KKLT class of type IIB string vacua for which
many moduli are stabilized through fluxes, as recently modified to include
`realistic' orbifold sectors containing standard-model type particles. We allow
all moduli to roll when searching for inflationary solutions and find that
inflation is not generic inasmuch as special choices must be made for the
parameters describing the vacuum. But given these choices inflation can occur
for a reasonably wide range of initial conditions for the brane and antibrane.
We find that D-terms associated with the orbifold blowing-up modes play an
important role in the inflationary dynamics. Since the models contain a
standard-model-like sector after inflation, they open up the possibility of
addressing reheating issues. We calculate predictions for the CMB temperature
fluctuations and find that these can be consistent with observations, but are
generically not deep within the scale-invariant regime and so can allow
appreciable values for as well as predicting a potentially
observable gravity-wave signal. It is also possible to generate some admixture
of isocurvature fluctuations.Comment: 39 pages, 21 figures; added references; identified parameters
combining successful inflation with strong warping, as needed for consistency
of the approximation
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
- …