122 research outputs found

    Expanding Cosmologies in Brane Geometries

    Get PDF
    Five dimensional gravity coupled, both in the bulk and on a brane, to a scalar Liouville field yields a geometry confined to a strip around the brane and with time dependent scale factors for the four geometry. In various limits known models can be recovered as well as a temporally expanding four geometry with a warp factor falling exponentially away from the brane. The effective theory on the brane has a time dependent Planck mass and ``cosmological constant''. Although the scale factor expands, the expansion is not an acceleration.Comment: 7 pages, LaTex/RevTex

    A Dark Matter Candidate from an Extra (Non-Universal) Dimension

    Get PDF
    We show that a recently constructed five-dimensional (5D) model with gauge-Higgs unification and explicit Lorentz symmetry breaking in the bulk, provides a natural dark matter candidate. This is the lightest Kaluza-Klein particle odd under a certain discrete Z_2 symmetry, which has been introduced to improve the naturalness of the model, and resembles KK-parity but is less constraining. The dark matter candidate is the first KK mode of a 5D gauge field and electroweak bounds force its mass above the TeV scale. Its pair annihilation rate is too small to guarantee the correct relic abundance; however coannihilations with colored particles greatly enhance the effective annihilation rate, leading to realistic relic densities.Comment: 26 pages, 10 figures; v2: fig.1 corrected, one reference and some comments added, conclusions unchanged. Version to appear in JHE

    Stabilization of internal spaces in multidimensional cosmology

    Get PDF
    Effective 4-dimensional theories are investigated which were obtained under dimensional reduction of multidimensional cosmological models with a minimal coupled scalar field as matter source. Conditions for the internal space stabilization are considered and the possibility for inflation in the external space is discussed. The electroweak as well as the Planck fundamental scale approaches are investigated and compared with each other. It is shown that there exists a rescaling for the effective cosmological constant as well as for gravitational exciton masses in the different approaches.Comment: 12 pages, LaTeX2e, to appear in Phys.Rev.D, note adde

    Brane inflation and the fine-tuning problem

    Full text link
    Brane inflation can provide a promissing framework for solving the fine-tuning problem in standard inflationary models. The aim of this paper is to illustrate the mechanism by which this can be achieved. By considering the supersymmetric two-stage inflation model it is shown that the initial fine-tuning of the coupling parameter can be considerably relaxed. SubPlanckian values of the inflaton during inflation can also be obtained.Comment: 04 pages (Revtex

    Scale invariant scalar metric fluctuations during inflation: non-perturbative formalism from a 5D vacuum

    Full text link
    We extend to 5D an approach of a 4D non-perturbative formalism to study scalar metric fluctuations of a 5D Riemann-flat de Sitter background metric. In contrast with the results obtained in 4D, the spectrum of cosmological scalar metric fluctuations during inflation can be scale invariant and the background inflaton field can take sub-Planckian values.Comment: final version to be published in Eur. Phys. J.

    Minimal Composite Higgs Model with Light Bosons

    Full text link
    We analyze a composite Higgs model with the minimal content that allows a light Standard-Model-like Higgs boson, potentially just above the current LEP limit. The Higgs boson is a bound state made up of the top quark and a heavy vector-like quark. The model predicts that only one other bound state may be lighter than the electroweak scale, namely a CP-odd neutral scalar. Several other composite scalars are expected to have masses in the TeV range. If the Higgs decay into a pair of CP-odd scalars is kinematically open, then this decay mode is dominant, with important implications for Higgs searches. The lower bound on the CP-odd scalar mass is loose, in some cases as low as ∌\sim 100 MeV, being set only by astrophysical constraints.Comment: 33 pages, latex. Corrections in eqs. 3.21, 3.23, 4.1, 4.5-10. One figure adde

    Z boson pair production at LHC in a stabilized Randall-Sundrum scenario

    Get PDF
    We study the Z boson pair production at LHC in the Randall-Sundrum scenario with the Goldberger-Wise stabilization mechanism. It is shown that comprehensive account of the Kaluza-Klein graviton and radion effects is crucial to probe the model: The KK graviton effects enhance the cross section of gg→ZZg g \to Z Z on the whole so that the resonance peak of the radion becomes easy to detect, whereas the RS effects on the qqˉ→ZZq\bar{q} \to Z Z process are rather insignificant. The pTp_T and invariant-mass distributions are presented to study the dependence of the RS model parameters. The production of longitudinally polarized Z bosons, to which the SM contributions are suppressed, is mainly due to KK gravitons and the radion, providing one of the most robust methods to signal the RS effects. The 1σ1 \sigma sensitivity bounds on (Λπ,mϕ)(\Lambda_\pi, m_\phi) with k/MPl=0.1k/M_{\rm Pl} =0.1 are also obtained such that the effective weak scale Λπ\Lambda_\pi of order 5 TeV can be experimentally probed.Comment: 28 pages, LaTex file, 18 eps figure

    Large Extra Dimensions and Cosmological Problems

    Get PDF
    We consider a variant of the brane-world model in which the universe is the direct product of a Friedmann, Robertson-Walker (FRW) space and a compact hyperbolic manifold of dimension d≄2d\geq2. Cosmology in this space is particularly interesting. The dynamical evolution of the space-time leads to the injection of a large entropy into the observable (FRW) universe. The exponential dependence of surface area on distance in hyperbolic geometry makes this initial entropy very large, even if the CHM has relatively small diameter (in fundamental units). This provides an attractive reformulation of the cosmological entropy problem, in which the large entropy is a consequence of the topology, though we would argue that a final solution of the entropy problem requires a dynamical explanation of the topology of spacetime. Nevertheless, it is reassuring that this entropy can be achieved within the holographic limit if the ordinary FRW space is also a compact hyperbolic manifold. In addition, the very large statistical averaging inherent in the collapse of the initial entropy onto the brane acts to smooth out initial inhomogeneities. This smoothing is then sufficient to account for the current homogeneity of the universe. With only mild fine-tuning, the current flatness of the universe can also then be understood. Finally, recent brane-world approaches to the hierarchy problem can be readily realized within this framework.Comment: 15 pages, 1 figure. Revised and corrected discussions of the entropy problem. New references adde

    Brane decay of a (4+n)-dimensional rotating black hole: spin-0 particles

    Get PDF
    In this work, we study the `scalar channel' of the emission of Hawking radiation from a (4+n)-dimensional, rotating black hole on the brane. We numerically solve both the radial and angular part of the equation of motion for the scalar field, and determine the exact values of the absorption probability and of the spheroidal harmonics, respectively. With these, we calculate the particle, energy and angular momentum emission rates, as well as the angular variation in the flux and power spectra -- a distinctive feature of emission during the spin-down phase of the life of the produced black hole. Our analysis is free from any approximations, with our results being valid for arbitrarily large values of the energy of the emitted particle, angular momentum of the black hole and dimensionality of spacetime. We finally compute the total emissivities for the number of particles, energy and angular momentum and compare their relative behaviour for different values of the parameters of the theory.Comment: 24 pages, 13 figure

    Inflation and late time acceleration in braneworld cosmological models with varying brane tension

    Get PDF
    Braneworld models with variable brane tension λ\lambda introduce a new degree of freedom that allows for evolving gravitational and cosmological constants, the latter being a natural candidate for dark energy. We consider a thermodynamic interpretation of the varying brane tension models, by showing that the field equations with variable λ\lambda can be interpreted as describing matter creation in a cosmological framework. The particle creation rate is determined by the variation rate of the brane tension, as well as by the brane-bulk energy-matter transfer rate. We investigate the effect of a variable brane tension on the cosmological evolution of the Universe, in the framework of a particular model in which the brane tension is an exponentially dependent function of the scale factor. The resulting cosmology shows the presence of an initial inflationary expansion, followed by a decelerating phase, and by a smooth transition towards a late accelerated de Sitter type expansion. The varying brane tension is also responsible for the generation of the matter in the Universe (reheating period). The physical constraints on the model parameters, resulted from the observational cosmological data, are also investigated.Comment: 25 pages, 8 figures, accepted for publication in European Physical Journal
    • 

    corecore