122 research outputs found
Expanding Cosmologies in Brane Geometries
Five dimensional gravity coupled, both in the bulk and on a brane, to a
scalar Liouville field yields a geometry confined to a strip around the brane
and with time dependent scale factors for the four geometry. In various limits
known models can be recovered as well as a temporally expanding four geometry
with a warp factor falling exponentially away from the brane. The effective
theory on the brane has a time dependent Planck mass and ``cosmological
constant''. Although the scale factor expands, the expansion is not an
acceleration.Comment: 7 pages, LaTex/RevTex
A Dark Matter Candidate from an Extra (Non-Universal) Dimension
We show that a recently constructed five-dimensional (5D) model with
gauge-Higgs unification and explicit Lorentz symmetry breaking in the bulk,
provides a natural dark matter candidate. This is the lightest Kaluza-Klein
particle odd under a certain discrete Z_2 symmetry, which has been introduced
to improve the naturalness of the model, and resembles KK-parity but is less
constraining.
The dark matter candidate is the first KK mode of a 5D gauge field and
electroweak bounds force its mass above the TeV scale. Its pair annihilation
rate is too small to guarantee the correct relic abundance; however
coannihilations with colored particles greatly enhance the effective
annihilation rate, leading to realistic relic densities.Comment: 26 pages, 10 figures; v2: fig.1 corrected, one reference and some
comments added, conclusions unchanged. Version to appear in JHE
Stabilization of internal spaces in multidimensional cosmology
Effective 4-dimensional theories are investigated which were obtained under
dimensional reduction of multidimensional cosmological models with a minimal
coupled scalar field as matter source. Conditions for the internal space
stabilization are considered and the possibility for inflation in the external
space is discussed. The electroweak as well as the Planck fundamental scale
approaches are investigated and compared with each other. It is shown that
there exists a rescaling for the effective cosmological constant as well as for
gravitational exciton masses in the different approaches.Comment: 12 pages, LaTeX2e, to appear in Phys.Rev.D, note adde
Brane inflation and the fine-tuning problem
Brane inflation can provide a promissing framework for solving the
fine-tuning problem in standard inflationary models. The aim of this paper is
to illustrate the mechanism by which this can be achieved. By considering the
supersymmetric two-stage inflation model it is shown that the initial
fine-tuning of the coupling parameter can be considerably relaxed. SubPlanckian
values of the inflaton during inflation can also be obtained.Comment: 04 pages (Revtex
Scale invariant scalar metric fluctuations during inflation: non-perturbative formalism from a 5D vacuum
We extend to 5D an approach of a 4D non-perturbative formalism to study
scalar metric fluctuations of a 5D Riemann-flat de Sitter background metric. In
contrast with the results obtained in 4D, the spectrum of cosmological scalar
metric fluctuations during inflation can be scale invariant and the background
inflaton field can take sub-Planckian values.Comment: final version to be published in Eur. Phys. J.
Minimal Composite Higgs Model with Light Bosons
We analyze a composite Higgs model with the minimal content that allows a
light Standard-Model-like Higgs boson, potentially just above the current LEP
limit. The Higgs boson is a bound state made up of the top quark and a heavy
vector-like quark. The model predicts that only one other bound state may be
lighter than the electroweak scale, namely a CP-odd neutral scalar. Several
other composite scalars are expected to have masses in the TeV range. If the
Higgs decay into a pair of CP-odd scalars is kinematically open, then this
decay mode is dominant, with important implications for Higgs searches. The
lower bound on the CP-odd scalar mass is loose, in some cases as low as
100 MeV, being set only by astrophysical constraints.Comment: 33 pages, latex. Corrections in eqs. 3.21, 3.23, 4.1, 4.5-10. One
figure adde
Z boson pair production at LHC in a stabilized Randall-Sundrum scenario
We study the Z boson pair production at LHC in the Randall-Sundrum scenario
with the Goldberger-Wise stabilization mechanism. It is shown that
comprehensive account of the Kaluza-Klein graviton and radion effects is
crucial to probe the model: The KK graviton effects enhance the cross section
of on the whole so that the resonance peak of the radion becomes
easy to detect, whereas the RS effects on the process are
rather insignificant. The and invariant-mass distributions are presented
to study the dependence of the RS model parameters. The production of
longitudinally polarized Z bosons, to which the SM contributions are
suppressed, is mainly due to KK gravitons and the radion, providing one of the
most robust methods to signal the RS effects. The sensitivity bounds
on with are also obtained such that
the effective weak scale of order 5 TeV can be experimentally
probed.Comment: 28 pages, LaTex file, 18 eps figure
Large Extra Dimensions and Cosmological Problems
We consider a variant of the brane-world model in which the universe is the
direct product of a Friedmann, Robertson-Walker (FRW) space and a compact
hyperbolic manifold of dimension . Cosmology in this space is
particularly interesting. The dynamical evolution of the space-time leads to
the injection of a large entropy into the observable (FRW) universe. The
exponential dependence of surface area on distance in hyperbolic geometry makes
this initial entropy very large, even if the CHM has relatively small diameter
(in fundamental units). This provides an attractive reformulation of the
cosmological entropy problem, in which the large entropy is a consequence of
the topology, though we would argue that a final solution of the entropy
problem requires a dynamical explanation of the topology of spacetime.
Nevertheless, it is reassuring that this entropy can be achieved within the
holographic limit if the ordinary FRW space is also a compact hyperbolic
manifold. In addition, the very large statistical averaging inherent in the
collapse of the initial entropy onto the brane acts to smooth out initial
inhomogeneities. This smoothing is then sufficient to account for the current
homogeneity of the universe. With only mild fine-tuning, the current flatness
of the universe can also then be understood. Finally, recent brane-world
approaches to the hierarchy problem can be readily realized within this
framework.Comment: 15 pages, 1 figure. Revised and corrected discussions of the entropy
problem. New references adde
Brane decay of a (4+n)-dimensional rotating black hole: spin-0 particles
In this work, we study the `scalar channel' of the emission of Hawking
radiation from a (4+n)-dimensional, rotating black hole on the brane. We
numerically solve both the radial and angular part of the equation of motion
for the scalar field, and determine the exact values of the absorption
probability and of the spheroidal harmonics, respectively. With these, we
calculate the particle, energy and angular momentum emission rates, as well as
the angular variation in the flux and power spectra -- a distinctive feature of
emission during the spin-down phase of the life of the produced black hole. Our
analysis is free from any approximations, with our results being valid for
arbitrarily large values of the energy of the emitted particle, angular
momentum of the black hole and dimensionality of spacetime. We finally compute
the total emissivities for the number of particles, energy and angular momentum
and compare their relative behaviour for different values of the parameters of
the theory.Comment: 24 pages, 13 figure
Inflation and late time acceleration in braneworld cosmological models with varying brane tension
Braneworld models with variable brane tension introduce a new
degree of freedom that allows for evolving gravitational and cosmological
constants, the latter being a natural candidate for dark energy. We consider a
thermodynamic interpretation of the varying brane tension models, by showing
that the field equations with variable can be interpreted as
describing matter creation in a cosmological framework. The particle creation
rate is determined by the variation rate of the brane tension, as well as by
the brane-bulk energy-matter transfer rate. We investigate the effect of a
variable brane tension on the cosmological evolution of the Universe, in the
framework of a particular model in which the brane tension is an exponentially
dependent function of the scale factor. The resulting cosmology shows the
presence of an initial inflationary expansion, followed by a decelerating
phase, and by a smooth transition towards a late accelerated de Sitter type
expansion. The varying brane tension is also responsible for the generation of
the matter in the Universe (reheating period). The physical constraints on the
model parameters, resulted from the observational cosmological data, are also
investigated.Comment: 25 pages, 8 figures, accepted for publication in European Physical
Journal
- âŠ