90 research outputs found
Recommended from our members
Intestinal P-glycoprotein exports endocannabinoids to prevent inflammation and maintain homeostasis
Neutrophil influx into the intestinal lumen is a critical response to infectious agents, but is also associated with severe intestinal damage observed in idiopathic inflammatory bowel disease. The chemoattractant hepoxilin A3, an eicosanoid secreted from intestinal epithelial cells by the apically restricted efflux pump multidrug resistance protein 2 (MRP2), mediates this neutrophil influx. Information about a possible counterbalance pathway that could signal the lack of or resolution of an apical inflammatory signal, however, has yet to be described. We now report a system with such hallmarks. Specifically, we identify endocannabinoids as the first known endogenous substrates of the apically restricted multidrug resistance transporter P-glycoprotein (P-gp) and reveal a mechanism, which we believe is novel, for endocannabinoid secretion into the intestinal lumen. Knockdown or inhibition of P-gp reduced luminal secretion levels of N-acyl ethanolamine-type endocannabinoids, which correlated with increased neutrophil transmigration in vitro and in vivo. Additionally, loss of CB2, the peripheral cannabinoid receptor, led to increased pathology and neutrophil influx in models of acute intestinal inflammation. These results define a key role for epithelial cells in balancing the constitutive secretion of antiinflammatory lipids with the stimulated secretion of proinflammatory lipids via surface efflux pumps in order to control neutrophil infiltration into the intestinal lumen and maintain homeostasis in the healthy intestine
The Two Faces of Anomaly Mediation
Anomaly mediation is a ubiquitous source of supersymmetry (SUSY) breaking
which appears in almost every theory of supergravity. In this paper, we show
that anomaly mediation really consists of two physically distinct phenomena,
which we dub "gravitino mediation" and "Kahler mediation". Gravitino mediation
arises from minimally uplifting SUSY anti-de Sitter (AdS) space to Minkowski
space, generating soft masses proportional to the gravitino mass. Kahler
mediation arises when visible sector fields have linear couplings to SUSY
breaking in the Kahler potential, generating soft masses proportional to beta
function coefficients. In the literature, these two phenomena are lumped
together under the name "anomaly mediation", but here we demonstrate that they
can be physically disentangled by measuring associated couplings to the
goldstino. In particular, we use the example of gaugino soft masses to show
that gravitino mediation generates soft masses without corresponding goldstino
couplings. This result naively violates the goldstino equivalence theorem but
is in fact necessary for supercurrent conservation in AdS space. Since
gravitino mediation persists even when the visible sector is sequestered from
SUSY breaking, we can use the absence of goldstino couplings as an unambiguous
definition of sequestering.Comment: 21 pages, 1 table; v2, references added, extended discussion in
introduction and appendix; v3, JHEP versio
Hydrogen Epoch of Reionization Array (HERA)
The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to
measure 21 cm emission from the primordial intergalactic medium (IGM)
throughout cosmic reionization (), and to explore earlier epochs of our
Cosmic Dawn (). During these epochs, early stars and black holes
heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is
designed to characterize the evolution of the 21 cm power spectrum to constrain
the timing and morphology of reionization, the properties of the first
galaxies, the evolution of large-scale structure, and the early sources of
heating. The full HERA instrument will be a 350-element interferometer in South
Africa consisting of 14-m parabolic dishes observing from 50 to 250 MHz.
Currently, 19 dishes have been deployed on site and the next 18 are under
construction. HERA has been designated as an SKA Precursor instrument.
In this paper, we summarize HERA's scientific context and provide forecasts
for its key science results. After reviewing the current state of the art in
foreground mitigation, we use the delay-spectrum technique to motivate
high-level performance requirements for the HERA instrument. Next, we present
the HERA instrument design, along with the subsystem specifications that ensure
that HERA meets its performance requirements. Finally, we summarize the
schedule and status of the project. We conclude by suggesting that, given the
realities of foreground contamination, current-generation 21 cm instruments are
approaching their sensitivity limits. HERA is designed to bring both the
sensitivity and the precision to deliver its primary science on the basis of
proven foreground filtering techniques, while developing new subtraction
techniques to unlock new capabilities. The result will be a major step toward
realizing the widely recognized scientific potential of 21 cm cosmology.Comment: 26 pages, 24 figures, 2 table
Longitudinal clinical, cognitive and biomarker profiles in dominantly inherited versus sporadic early-onset Alzheimer's disease
Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD +/- 8.5) years versus 54.8 (SD +/- 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-epsilon 4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P < 0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD +/- 39.3) pg/ml dominantly inherited versus 296 (SD +/- 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles;sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design
Detection of Cosmic Structures using the Bispectrum Phase. II. First Results from Application to Cosmic Reionization Using the Hydrogen Epoch of Reionization Array
Characterizing the epoch of reionization (EoR) at via the
redshifted 21 cm line of neutral Hydrogen (HI) is critical to modern
astrophysics and cosmology, and thus a key science goal of many current and
planned low-frequency radio telescopes. The primary challenge to detecting this
signal is the overwhelmingly bright foreground emission at these frequencies,
placing stringent requirements on the knowledge of the instruments and
inaccuracies in analyses. Results from these experiments have largely been
limited not by thermal sensitivity but by systematics, particularly caused by
the inability to calibrate the instrument to high accuracy. The interferometric
bispectrum phase is immune to antenna-based calibration and errors therein, and
presents an independent alternative to detect the EoR HI fluctuations while
largely avoiding calibration systematics. Here, we provide a demonstration of
this technique on a subset of data from the Hydrogen Epoch of Reionization
Array (HERA) to place approximate constraints on the brightness temperature of
the intergalactic medium (IGM). From this limited data, at we infer
"" upper limits on the IGM brightness temperature to be
"pseudo" mK at "pseudo" Mpc (data-limited)
and "pseudo" mK at "pseudo" Mpc
(noise-limited). The "pseudo" units denote only an approximate and not an exact
correspondence to the actual distance scales and brightness temperatures. By
propagating models in parallel to the data analysis, we confirm that the
dynamic range required to separate the cosmic HI signal from the foregrounds is
similar to that in standard approaches, and the power spectrum of the
bispectrum phase is still data-limited (at dynamic range)
indicating scope for further improvement in sensitivity as the array build-out
continues.Comment: 22 pages, 12 figures (including sub-figures). Published in PhRvD.
Abstract may be slightly abridged compared to the actual manuscript due to
length limitations on arXi
Mitigating Internal Instrument Coupling for 21 cm Cosmology. II. A Method Demonstration with the Hydrogen Epoch of Reionization Array
We present a study of internal reflection and cross-coupling systematics in Phase I of the Hydrogen Epoch of Reionization Array (HERA). In a companion paper, we outlined the mathematical formalism for such systematics and presented algorithms for modeling and removing them from the data. In this work, we apply these techniques to data from HERA's first observing season as a method demonstration. The data show evidence for systematics that, without removal, would hinder a detection of the 21 cm power spectrum for the targeted Epoch of Reionization (EoR) line-of-sight modes in the range 0.2 h â1 Mpcâ1 < < 0.5 h â1 Mpcâ1. In particular, we find evidence for nonnegligible amounts of spectral structure in the raw autocorrelations that overlaps with the EoR window and is suggestive of complex instrumental effects. Through systematic modeling on a single night of data, we find we can recover these modes in the power spectrum down to the integrated noise floor, achieving a dynamic range in the EoR window of 106 in power (mK2 units) with respect to the bright galactic foreground signal. Future work with deeper integrations will help determine whether these systematics can continue to be mitigated down to EoR levels. For future observing seasons, HERA will have upgraded analog and digital hardware to better control these systematics in the field
- âŠ